DOI QR코드

DOI QR Code

Effect of Fertigation with Indigenous Microorganism and EM on Soil Chemical and Microbial Properties and Growth of Cherry Tomatoes

토착미생물과 EM 활용 액비 처리가 방울토마토의 토양 화학성과 미생물상 및 생장에 미치는 영향

  • Choi, Hyun-Sug (Department of Horticulture, Daegu Catholic University) ;
  • Jung, Ji-Sik (Department of Horticulture, Daegu Catholic University) ;
  • Kuk, Yong-In (Department of Oriental Medicine Resources, Sunchon National University) ;
  • Choi, In-Young (Department of Agricultural Biology, Jeonbuk National University) ;
  • Jung, Seok-Kyu (Department of Horticulture, Daegu Catholic University)
  • 최현석 (대구가톨릭대학교 원예학과) ;
  • 정지식 (대구가톨릭대학교 원예학과) ;
  • 국용인 (순천대학교 한약자원개발학과) ;
  • 최인영 (전북대학교 농생물학과) ;
  • 정석규 (대구가톨릭대학교 원예학과)
  • Received : 2019.09.08
  • Accepted : 2019.11.18
  • Published : 2019.12.20

Abstract

The study was compared for soil chemical and microbial properties as well as growth of the cherry tomato (Lycopersicon esculentum var. cerasiforme) plants environmentally friendly gown for 3 years and 5 years, which had been fertigated with homemade liquid fertilizer (LF) with indigenous microorganism as an additional fertilizer. Treatment included LF with indigenous microorganism for 3 years (3-year IM-LF) and for 5 years (5-year IM-LF), with an effective microorganism for 10 years (EM-LF), which had been applied with 1,000 times of dilution in the farmhouse. IM-LF and EM-LF materials had increased pH pattern for 16 weeks, in particular for increase of 1.2 for EM-LF. IM-LF material contained slightly higher EC but similar level of 0.2 dS/m to EM-LF. For a pot experiment in the greenhouse, IM-LF treatment increased root dry weight of the cherry tomato plants. In the farmhouse experiment, IM-LF treatment increased to 7.5 of soil pH and 8.4 dS/m of EC, indicating high salt accumulation. EM-LF treatment increased to 62 g/kg of soil OM, which would have affected concentrations of macro essential nutrients, including T-N in the soil. However, the optimum soil chemical levels for growth of cherry tomato plants were observed on the IM-LF plots. EM-LF treatment increased number of bacteria and actinobacteria in the soil. EM-LF treatment increased concentrations of macro essential nutrients in the plants, except for P, with similar nutrient concentrations observed between 3-year IM-LF and 5-year IM-LF-treated plants. Leaf SPAD and PS II levels decreased in the plants treated with 3-year IM-LF. EM-LF treatment increased leaf width and length, number of leaves, canopy area, plant height, and stem diameter in the mid-term stage of growth, which were not significantly different between the treatments. EM-LF treated-plants had two times higher leaf dry weight than those of values observed on the IM-LF plants, which was the opposite result observed on the number of fruit.

본 실험은 방울토마토(Lycopersicon esculentum var. cerasiforme) 농가에서 자가제조한 토착미생물 액비를 3년 및 5년간 연용 처리하였을 때 토양 화학성 및 미생물상과 작물의 생장에 어떠한 영향을 미치는지를 비교하고자 수행하였다. 실험구는 3-year IM(토착미생물 3년 노지 처리구), 5-year IM(토착미생물 5년 노지 처리구), EM(effective microorganisms; EM 10년 온실 처리구)으로 분류하였고, 모두 1,000배로 희석하여 웃거름으로 관주하였다. IM과 EM 액비 자재의 pH 수준은 16주간 증가하였고 특히 EM의 pH는 1.2정도 상승하였다. IM 자재의 EC는 약간 높았지만 EM과 비슷한 수준인 0.2 dS/m으로 나타났다. 온실 내 포트 실험에서는 IM으로 처리된 토마토 뿌리의 건물중이 크게 증가하였다. 액비 처리에 따른 농가 현장 실험에서는 IM 액비 처리구의 pH는 7.5로 높았고 EC도 8.4 dS/m로 염류 과잉 수준을 보였다. EM 처리구의 유기물함량은 62 g/kg으로 가장 높았고 전질소 등 필수 무기성분 농도를 증가시키는데 영향을 끼쳤다. 하지만 IM 처리구에서도 토마토 생장을 위한 적절한 토양 화학성 수준이 관찰되었다. EM 처리구에서 세균수와 방선균수가 가장 증가하였다. EM으로 처리된 작물의 대량 무기성분 농도는 인산을 제외하고는 높게 나타났고 3-year IM과 5-year IM 처리구에서는 비슷한 무기성분 농도가 관찰되었다. 잎의 SPAD와 PSII 수준은 3-year IM 처리에서 낮게 나타났다. 토마토 작물의 엽폭, 엽장, 엽수, 수관면적, 초장, 경경은 생육 중기에는 EM 처리구에서 높은 수준이었으나 생육 후기에는 처리구 간에 비슷하였다. EM 처리로 잎 건물중은 IM 처리보다 2배 이상 높았지만 수확과수는 2배 이상 감소되었다.

Keywords

References

  1. RDA, "Tomato, 2nd publication", RDA, (2018).
  2. Rosen, C. J. and Allan, D. L., "Exploring the benefits of organic nutrient sources for crop production and quality", HortTechnol., 17, pp. 422-430. (2006). https://doi.org/10.21273/horttech.17.4.422
  3. Parr, J. F., Papendick, R. I. and Colacicco, D., "Recycling of organic wastes for a sustainable agriculture", Biol. Agric. Hortic., 3, pp. 115-130. (1986). https://doi.org/10.1080/01448765.1986.9754466
  4. Hartz, T. K., Smith, R. and Gaskell, M., "Nitrogen availability from liquid organic fertilizers", HortTechnol., 20, pp. 169-172. (2010). https://doi.org/10.21273/HORTTECH.20.1.169
  5. Liedl, B. E., Bombardiere, J. and Chaffield, J. M., "Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste", Water Sci. Technol., 53, pp. 69-79. (2006).
  6. Zhai, Z., Ehret, D. L., Forge, T., Helmer, T., Lin, W. and Gv, C., "Organic fertilizers for greenhouse tomatoes : Productivity and substrate microbiology", HortScience, 44, pp. 800-809. (2009). https://doi.org/10.21273/HORTSCI.44.3.800
  7. Choi, H. S., Jung, J. S. and Jung, S. K., "Organic cucumber productivity affected by long-term application with homemade liquid fertilizers", Korean J. Org. Agric., 27, pp. 87-100. (2019). https://doi.org/10.11625/KJOA.2019.27.1.87
  8. RDA, "Analysis methods of soil and plant", National Institute of Agriculture Science, RDA, (2010).
  9. RDA, "Criteria of fertilizer application in crops", National Institute of Agriculture Science, RDA, (2011).
  10. Albiach, R., "Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural crops", Bioresource Technol., 75, pp. 43-48. (2000). https://doi.org/10.1016/S0960-8524(00)00030-4
  11. Jeong, S. J., Oh, J. S., Seok, W. Y., Kim, J. H., Kim, D. H. and Chung, W. B., "Effect of chitosan, wood vinegar and EM on microorganisms in soil and early growth of tomato", Korean J. Org. Agric., 14, pp. 433-443. (2006).
  12. Jeong, S. J., Cho, M. Y., Seok, W. Y., Lee, S. L., Lee, H. J. and Oh, J. S., "Effects of organic materials, chitosan, wood vinegar, and EM active solution on soil microbial and growth in Chinese cabbage", J. Life Sci., 21, pp. 584-588. (2011). https://doi.org/10.5352/JLS.2011.21.4.584
  13. Havlin, J. L., Beaton, J. D., Tisdale, S. L. and Nelson, W. L., "Soil fertility and fertilizers", Person Education Ltd., USA, pp. 1-515. (2004).
  14. Ulissi, V., Antonucci, F., Benincasa, P., Farneselli, M., Tosti, G., Guiducci, M., Tei, F., Costa, C., Pallottino, F., Pari, L. and Menesatti, P., "Nitrogen concentration estimation in tomato leaves by VISNIR non-destructive spectroscopy", Sensors, 11, pp. 6411-6424. (2011). https://doi.org/10.3390/s110606411
  15. Aliyu, L., "Effects of organic and mineral fertilizers on growth, yield and composition of pepper (Capsicum annuum L.)", Biol. Agric. Hortic., 18, pp. 29-36. (2000). https://doi.org/10.1080/01448765.2000.9754862
  16. Amnifard, M., Aroiee, H., Nemati, H. and Azizi, M., "Effect of nitrogen fertilizer on vegetative and reproductive growth of pepper plants under field conditions", J. Plant Nutr., 35, pp. 235-242. (2012). https://doi.org/10.1080/01904167.2012.636126
  17. Park, J. S., Lee, M. J., Lee, S. Y., Kim, J. S., Lee, T. K., Ro, H. M., Kim, S. J., Jeon, S. W., Seo, S. G., Kim, K. Y., Lee, G. H. and Jeong, B. G., "Effect of mixed liquid fertilization on growth responses of cherry tomatoes and soil chemical properties", Kor. J. Hort. Sci. Technol., 33, pp. 268-275. (2015).