DOI QR코드

DOI QR Code

Genetic Diversity of Angelica gigas Nakai Collected in Korea using Genome-Wide SSR Markers

Genome-Wide SSR 마커를 이용한 주요 산지별 참당귀의 유전다양성 분석

  • Jeong, Dae Hui (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Park, Yun Mi (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Kim, Ki Yoon (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Park, Hong Woo (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Jeon, Kwon Seok (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Kim, Mahn Jo (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Gil, Jin Su (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, Yi (Department of Food Science and Technology, Chungbuk National University) ;
  • Um, Yurry (Forest Medicinal Resources Research Center, National Institute of Forest Science)
  • 정대희 (국립산림과학원 산림약용자원연구소) ;
  • 박윤미 (국립산림과학원 산림약용자원연구소) ;
  • 김기윤 (국립산림과학원 산림약용자원연구소) ;
  • 박홍우 (국립산림과학원 산림약용자원연구소) ;
  • 전권석 (국립산림과학원 산림약용자원연구소) ;
  • 김만조 (국립산림과학원 산림약용자원연구소) ;
  • 길진수 (충북대학교 농업생명환경대학 특용식물학과) ;
  • 이이 (충북대학교 농업생명환경대학 특용식물학과) ;
  • 엄유리 (국립산림과학원 산림약용자원연구소)
  • Received : 2019.04.09
  • Accepted : 2019.11.19
  • Published : 2019.12.31

Abstract

Background: Angelica gigas Nakai has been used as an herbal medicine in Eastern Asia for treating disorders in women for a long time. To date there are no studies on the genetic diversity of A. gigas. The present study aimed to study the genetic diversity of A. gigas variants using genome-wide simple sequence repeat (SSR) markers. Methods and Results: The genetic diversity of 199 variants of A. gigas cultivated in of different regions, was analyzed using 5 genome-wide SSR markers. The results revealed that the genetic variants were very diverse, and genetic analysis using the 5 SSR markers revealed high diversity among the variants. Conclusions: It is expected that the development of the true Angleical cultivar, by studying the system and group selection, can be achieved by genetic analysis using the developed markers, for generating a genetically fixed lineage and group selection.

Keywords

References

  1. Bang KH, Jo IH, Chung JW, Kim YC, Lee JW, Seo AY, Park JH, Kim OT, Hyun DY, Kim DH and Cha SW. (2011). Analysis of genetic polymorphism of Korean ginseng cultivars and foreign accessions using SSR markers. Korean Journal of Medicinal Crop Science. 19:347-353. https://doi.org/10.7783/KJMCS.2011.19.5.347
  2. Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodria CD, Huang S and Weng Y. (2010). Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics. 11:569-586. https://doi.org/10.1186/1471-2164-11-569
  3. Cho TD. (2006). Encyclopedia of Korean Herbs. Daewonsa. Seoul, Korea. p.59.
  4. Chung JW, Lee GA, Lee SS, Bang KH, Park CB and Park YJ. (2009). Cultivar discrimination of Korean and Chinese Boxthorn (Lycium chinense Mill. and Lycium barbarum L.) using SSR markers. Korean Journal of Medicinal Crop Science. 17:445-451.
  5. Gil JS, Park SI, Lee Y, Kim HB, Kim SC, Kim OT, Cha SW, Jung CS and Um Y. (2016). Current status and prospects of the authentication of Angelica species. Journal of Plant Biotechnology. 43:151-156. https://doi.org/10.5010/JPB.2016.43.2.151
  6. Gil JS, Um Y, Kim SR, Kim OK, Koo SC, Reddy CS, Kim SC, Hong CP, Park SG, Kim HB, Lee DH, Jeong BH, Chung JW and Lee Y. (2017). Development of genome-wide SSR markers from Angelica gigas Nakai using next generation sequencing. Genes. 8:238 https://www.mdpi.com/2073-4425/8/10/238 (cited by 2016 May 20). https://doi.org/10.3390/genes8100238
  7. Jo IH, Bang KH, Kim YC, Kim JU, Shin MR, Moon JY, Noh BS, Hyun DY, Kim DH, Cha SW and Kim HS. (2013). Analysis of mitochondrial DNA sequence and molecular marker development for identification of Panax species. Korean Journal of Medicinal Crop Science. 21:91-96. https://doi.org/10.7783/KJMCS.2013.21.2.91
  8. Kim HS and Joung SW. (2006). Effective components and nitrite scavenging ability of root and leaves a Angelica gigas Nakai. The Korean Journal of Food and Cookery Science. 22:957-965.
  9. Kim JH, Seo JW, Byeon JH, Ahn YS, Cha SW and Cho JH. (2014a). Morphological characteristics and phylogenetic analysis of Polygonatum species based on chloroplast DNA sequences. Korean of Journal Medicinal Crop Science. 22:489-496. https://doi.org/10.7783/KJMCS.2014.22.6.489
  10. Kim JY, Yoon YD, Ahn JM, Kang JS, Park SK, Lee K, Song KB, Kim HM and Han SB. (2007). Angelan isolated from Angelica gigas Nakai induces dendritic cell maturation through toll-like receptor 4. International Immunopharmacol. 7:78-87. https://doi.org/10.1016/j.intimp.2006.08.017
  11. Kim SR, Jeong JH, Chung H, Kim JH, Gil JS, Yoo JM, Um Y, Kim OT, Kim TD, Kim YY, Lee DH, Kim HB and Lee Y. (2016). Simple sequence repeat marker development from Codonopsis lanceolata and genetic relation analysis. Journal of Plant Biotechnology. 43:181-188. https://doi.org/10.5010/JPB.2016.43.2.181
  12. Kim WJ, Ji YU, Kang Y and Moon BC. (2014b). Evaluation of genetic diversity of Polygonatum spp. by the analysis of simple sequence repeat(SSR). Korean Herbal Medicine Informatics. 2:41-47.
  13. Kofler R, Schlὅtterer C and Lelley T. (2007). SciRoKo: A new tool for whole genome microsatellite search and investigation. Bioinfomatics. 23:1683-1685. https://doi.org/10.1093/bioinformatics/btm157
  14. Lee MY, Ju YS, Kim HJ and Ko BS. (2001). Discrimination of Aralia continentalis root by the random amplified polymorphic DNA analysis and morphological characteristics. Korean Journal of Oriental Medicine. 7:145-152.
  15. Li G, Kwon SW, Choi YM and Park YJ. (2011). Genetic diversity analysis of mungbean accessions from east and central Asia using SSR markers. Journal of the Korean Society of International Agriculture. 23:185-193.
  16. Liao C, Downie SR, Li Q, Yu Y, He X and Zhou B. (2013). New insights into the phylogeny of Angelica and its allies(Apiaceae) with emphasis on east Asian species, inferred from nrDNA, cpDNA, and morphological evidence. Systematic Botany. 38:266-281. https://doi.org/10.1600/036364413X662060
  17. Lu Y, Cheng T, Zhu T, Jiang D, Zhou S, Jin L, Yuan Q and Huang L. (2015). Isolation and characterization of 18 polymorphic microsatellite markers for the "Female Ginseng" Angelica sinensis(Apiaceae) and cross-species amplification. Biochemical Systematics and Ecology. 61:488-492. https://doi.org/10.1016/j.bse.2015.07.013
  18. Mei Z, Zhang C, Khan A, Zhu Y, Tania M, Luo P and Fu J. (2015). Efficiency of improved RAPD and ISSR markers in assessing genetic diversity and relationships in Angelica sinensis(Oliv.) Diels varieties of China. Electronic Journal of Biotechnology. 18:96-102. https://doi.org/10.1016/j.ejbt.2014.12.006
  19. Moon BC, Kim WJ, Ji Y, Lee YM and Kim HK. (2013). Genetic diversity of Curcuma genus collected germplasm using analysis of AFLP. Korean Journal of Medicinal Crop Science. 21:455-460. https://doi.org/10.7783/KJMCS.2013.21.6.455
  20. Park KR, Kim YW, Kim TH, Ahn HY, Sim SY, Kim JW and Cho YS. (2017). Physicochemical characteristics and biological activities of monascus-fermented Angelica gigas Nakai by origin. Journal of Life Science. 27:919-929. https://doi.org/10.5352/JLS.2017.27.8.919
  21. Park SI, Kim SR, Gil JS, Lee Y, Kim HB, Lee JH, Kim SC, Jung CS and Um Y. (2016). Development of chloroplast DNA-based simple sequence repeat markers for Angelica species differentiation. Korean Journal of Medicinal Crop Science. 24:317-322. https://doi.org/10.7783/KJMCS.2016.24.4.317
  22. Ryu KS, Hong ND, Kim YY and Kong YY. (1990). Studies on the coumarin constituents of the root of Angelica gigas Nakai. Isolation of decursinol angelate and assay of decursinol angelate and decursin. Korean Journal of Pharmacognosy. 21:64-68.
  23. Seong NS, Kim KS, Lee ST and Lee SW. (1993). Environmental variation of decursin content in Angelica gigas. Korean Journal of Crop Science. 38:60-65.
  24. Shendure J and Ji H. (2008). Next-generation DNA sequencing. Nature Biotechnology. 26:1135-1145. https://doi.org/10.1038/nbt1486
  25. Song JY, Lee GA, Yoon MS, Ma KH, Choi YM, Lee JR, Park HJ and Lee MC. (2012). Development and characterization of 22 polymorphic microsatellite markers for the balloon flower Platycodon grandiflorum(Campanulaceae). Genetics and Molecular Research. 11:3263-3266. https://doi.org/10.4238/2012.September.12.9
  26. Um Y, Jin ML, Kim OT, Kim YC, Kim SC, Cha SW, Chung KW, Kim S, Chung CM and Lee Y. (2016a). Identification of Korean ginseng(Panax ginseng) cultivars using simple sequence repeat markers. Plant Breeding and Biotechnology. 4:71-78. https://doi.org/10.9787/PBB.2016.4.1.71
  27. Um Y, Jin ML, Lee Y, Hur M, Cha SW, Jung CS, Kim SC, Jung CS and Lee JH. (2016b). Genetic diversity analysis of Glycyrrhiza ularensis using 8 novel polymorphic microsatellite markers. Journal of Plant Biotechnology. 43:174-180. https://doi.org/10.5010/JPB.2016.43.2.174
  28. Williams JGK, Kubelik AR, Livak KJ, Raafalski JA and Tingey SV. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 18:6531-6535. https://doi.org/10.1093/nar/18.22.6531
  29. Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, Mccown B, Harbut R and Simon P. (2012). Using nextgeneration sequencing approaches to isolate simple sequence repeat(SSR) loci in the plant. American Journal of Botany. 99:193-208. https://doi.org/10.3732/ajb.1100394
  30. Zhu H, Senalik D, McCown BH, Zeldin EL, Speers J, Hyman J, Bassil N, Hummer K, Simon PW and Zalapa JE. (2011). Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry(Vaccinium macrocarpon Ait.). Theoretical and Applied Genetics. 124:87-96. https://doi.org/10.1007/s00122-011-1689-2