DOI QR코드

DOI QR Code

Increment Method of Radar Range using Noise Reduction

잡음 감소 기법을 활용한 레이다의 최대 거리 향상 기법

  • 이동효 (한국항공우주연구원 위성정보센터 위성운영실) ;
  • 정대원 (한국항공우주연구원) ;
  • 신한섭 (한국항공우주연구원) ;
  • 양형모 (한국항공우주연구원) ;
  • 김상동 (DGIST 미래자동차연구부) ;
  • 김봉석 (DGIST 미래자동차연구부) ;
  • 진영석 (DGIST 미래자동차연구부)
  • Received : 2019.10.31
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

This paper proposes a method to improve the detectable distance by reducing noise to perform a signal processing technique on the received signals. To increase the radar detection range, the noise component of the received signal has to be reduced. The proposed method reduces the noise component by employing two methods. First, the radar signals received with multiple pulses are accumulated. As the number of additions increases, the noise component gradually decreases due to noise randomness. On the other hand, the signal term gradually increases and thus signal to noise ratio increases. Secondly, after converting the accumulated signal into the frequency spectrum, a Least Mean Square (LMS) filter is applied. In the case of the radar received signal, desired signal exists in a specific part and most of the rest is a noise. Therefore, if the LMS filter is applied in the time domain, the noise increases. To prevent this, the LMS filter is applied after converting the received signal into the entire frequency spectrum. The LMS filter output is then transformed into the time domain and then range estimation algorithm is performed. Simulation results show that the proposed scheme reduces the noise component by about 25 dB. The experiment was conducted by comparing the proposed results with the conventional results of the radars held by the Korea Aerospace Research Institute for the international space station.

본 논문에서는 수신신호에 신호처리 기법을 수행함으로써 잡음을 감소시켜 탐지가능 거리를 향상시키는 방법을 제안한다. 레이다의 탐지 거리를 증가시키기 위해서는 수신신호의 잡음성분을 감소시켜야 한다. 제안하는 방식에서는 두 가지 방법을 이용하여 잡음성분을 감소시킨다. 첫째, 다수의 펄스로 송수신된 레이다 신호를 하나로 누적시킨다. 이때 더해지는 횟수가 증가할수록 잡음의 무작위성으로 인해 점차 작아지지만, 신호 부분은 점차 커지는 특성을 이용한다. 둘째, 누적된 신호를 주파수 스펙트럼으로 변환한 후 LMS (Least mean square) 필터를 적용시킨다. 레이다 수신신호의 경우 대부분이 잡음 성분이므로, 시간 영역에서 LMS 필터를 적용할 경우, 오히려 잡음이 더 증가하게 된다. 이를 방지하기 위해 수신신호를 전체 주파수 스펙트럼으로 변환한 후 LMS 필터를 적용한다. 이후 LMS 필터 출력을 시간 영역으로 다시 변환하고, 거리 추정 알고리즘을 수행한다. 시뮬레이션 결과를 통해 제안된 알고리즘을 적용함으로써 잡음 성분을 25 dB 개선시킴을 보였다. 실험은 국제우주정거장을 대상으로 한국항공우주연구원에서 보유중인 레이다의 기존 결과와 제안된 결과를 비교분석하여 최대 거리가 약 1,000 Km이상 측정됨을 관찰할 수 있었다.

Keywords

References

  1. Ardalan, S., Moghadami, S., and Jaafari, S. (2015). Motion Noise Cancelation in Heartbeat Sensing Using Accelerometer and Adaptive Filter, IEEE Embeded Systems Letter, 7(4), 101-104. https://doi.org/10.1109/LES.2015.2457933
  2. Cao, D., Chen, Z., and Gao, X. (2019). Research on Noise Reduction Algorithm Based on Combination of LMS Filter and Spectral Subtraction, Journal of Information Processing Systems, 15(4), 748-764. https://doi.org/10.3745/JIPS.04.0123
  3. Choi, J., Shin, H., Kim, D., and Kim, T. (2015). The Technical Trends of Recent Bistatic Radar, Current Industrial and Technological Trends in Aerospace, 13(1), 160-165.
  4. Choi, Y., and Ra, S. (2014). Implementation of Slaving Data Processing Function for Mission Control System in Space Center, Journal of the Korea Industrial Information Systems Society, 19(3), 31-39. https://doi.org/10.9723/jksiis.2014.19.3.031
  5. Dixit, S., and Nagaria, D. (2017). LMS Adaptive Filters for Noise Cancellation, International J ournal of Electrical and Computer Engineering, 7(5), 2520-2529.
  6. Janarthanan, V., VenkataRamana, P., Bhargavi, P., Suresh, M., and Gopala K, J. (2015). Optimized Correlation Algorithm for Enhancing Tracking Performance in pulsed CW Radar, 2015 International Conference on Signal Processing and Communication Engineering Systems, Jan. 3, Guntur, India.
  7. Kim, S., and Lee, K. (2018). Improved Low SNR Super-accuracy Spectral Estimator with a Short Window Time For Noncontact Vital Radar, Journal of Institute of Electronics and Information Engineers, 55(2), 97-104. https://doi.org/10.5573/ieie.2018.55.2.97
  8. Lee, C., and Oh, S. (2000). A Data Processing System on the Transportable Meteorological Radar, Journal of the Korea Industrial Information Systems Society, 5(3), 44-50.
  9. Lee, J., Choi, E., Moon, H., Park, J., and Cho, S. (2018). Design of L-Band-Phased Array Radar System for Space Situational Awareness, Journal of Korean Institute of Electromagnetic Engineering and Science, 29(3), 214-224. https://doi.org/10.5515/KJKIEES.2018.29.3.214
  10. Levski, D., and Choubey, B. (2016). On Noise in Time-delay Integration CMOS Image Sensors, Proceedings of SPIE 9891, Silicon Photonics and Photonic Integrated Circuits V, 989122, May 13, Brussels, Belgium.
  11. Scherr, S. Afroz, R. Ayhan, S. Thomas, S. Jaeschke, T. Marahrens, S. Bhutani, A. Pauli, M. Pohl, N., and Zwick, T. (2017). Influence of Radar Targets on the Accuracy of FMCW Radar Distance Measurements, IEEE Transactions Microwave Theory and Techniques, 65(10), 3640-3647. https://doi.org/10.1109/TMTT.2017.2741961
  12. Song, H. (2015). Performance Enhancement of Launch Vehicle Tracking Using GPS-based Multiple Radar Bias Estimation and Sensor Fusion, Journal of the Korea Industrial Information Systems Society, 20(6), 47-56. https://doi.org/10.9723/jksiis.2015.20.6.047
  13. Stimson, G. (1998). Introduction to Airborne Radar, SciTech Publishing Inc.
  14. Zhang, S. Wang, Y. Guo, H., Yang, C., Wang, X., and Liu N. (2019). A Normalized Frequency-domain Block Filtered-x LMS Algorithm for Active Vehicle Interior Noise Control, Mechanical Systems and Signal Processing, 120, 150-165. https://doi.org/10.1016/j.ymssp.2018.10.031

Cited by

  1. 레이다 및 카메라 내장형 스마트 조명에서 실종자 탐지용 색상 검출 향상 기법 vol.25, pp.3, 2020, https://doi.org/10.9723/jksiis.2020.25.3.053