DOI QR코드

DOI QR Code

Erosion Corrosion Characteristics of Al5052-O and Al6061-T6 Aluminum Alloys with Flow Rate of Seawater

해수 유속 변화에 따른 Al5052-O와 Al6061-T6 알루미늄 합금의 침식부식 특성

  • Kim, Young-Bok (Training Ship Segero, Mokpo National Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
  • 김영복 (목포해양대학교 실습선 세계로호) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2019.11.12
  • Accepted : 2019.12.12
  • Published : 2019.12.31

Abstract

The hull material of a high-speed ship may cause erosion damage from fluid impact. When physical erosion and electrochemical corrosion combine, erosion corrosion damage occurs. The aluminum ship is vulnerable to erosion corrosion because it can be operated at high speed. Thus, in this study, Al5052-O and Al6061-T6 aluminum alloys for the marine environment were selected as experimental materials. The erosion corrosion resistance of Al5052-O and Al6061-T6 aluminum alloys in seawater was investigated by an erosion test and potentiodynamic polarization test at the various flow rate (0 m/s, 5 m/s, 10 m/s, 15 m/s, 20 m/s). Erosion corrosion characteristics were evaluated by surface analysis, 3D analysis, SEM analysis, and the Tafel extrapolation method. The results of surface damage analysis after the erosion test showed that Al6061-T6 presented better erosion resistance than Al5052-O. The results of the potentiodynamic polarization test at the various flow rate, corrosion current density by Tafel extrapolation presented lower values of Al6061-T6 than Al5052-O. Al5052-O showed more surface damage than Al6061-T6 at all flow rates. Consequently, Al6061-T6 presented better erosion corrosion resistance than Al5052-O. The results of this study are valuable data for selecting hull material for an aluminum alloy vessel.

Keywords

References

  1. K. S. Yeom, J. K. Lim, and I. J. Bae, Proc. Conf., 1, pp. 227 - 230, The Korean Welding and Joining Society, Korea (1995).
  2. S. Y. Lee, U. J. Lim, and B. D. Yun, J. Kor. Soc. Fish. Mar. Sci. Educ., 10, 69 (1998).
  3. S. R. Dehghani, Y. S. Muzychka, and G. F. Naterer, Cold Reg. Sci. Technol., 126, 1 (2016). https://doi.org/10.1016/j.coldregions.2016.02.011
  4. U. J. Lim and H. K. Jung, J. Kor. Soc. Fish. Ocean Technol., 32, 196 (1999).
  5. I. C. Park, M. S. Han, and S. J. Kim, J. Weld. Join., 37, 254 (2019). https://doi.org/10.5781/JWJ.2019.37.3.9
  6. S. J. Kim, J. Kor. Inst. Surf. Eng., 44, 105 (2011). https://doi.org/10.5695/JKISE.2011.44.3.105
  7. S. J. Kim, J. Korean Soc. Mar. Eng., 30, 540 (2006).
  8. A. George, Jr. Gehring, and M. H. Peterson, Corrosion, 37, 232 (1981). https://doi.org/10.5006/1.3577276
  9. C. Vargel, Corrosion of Aluminium, 1st ed., pp. 113 - 117, p. 141, p. 320, Elevier Ltd., Oxford (2004).
  10. S. J. Lee, M. S. Han, S. K. Jang, and S. J. Kim, Corros. Sci. Tech., 14, 226 (2015). https://doi.org/10.14773/cst.2015.14.5.226
  11. Buchheit, R. G., J. Electrochem. Soc., 142, 3994 (1995). https://doi.org/10.1149/1.2048447
  12. S. Ono, T. Makino, and R. S. Alwitt, J. Electrochem. Soc., 152, 39 (2005).
  13. F. D. Bogar and R. T. Foley, J. Electrochem. Soc., 119, 462 (1973). https://doi.org/10.1149/1.2404232

Cited by

  1. 선박용 AA5083-H321의 유속에 의한 침식손상 방지를 위한 최적 음극방식전위 규명 vol.19, pp.6, 2019, https://doi.org/10.14773/cst.2020.19.6.288