DOI QR코드

DOI QR Code

Development and Verification of OGSFLAC Simulator for Hydromechanical Coupled Analysis: Single-phase Fluid Flow Analysis

수리-역학적 복합거동 해석을 위한 OGSFLAC 시뮬레이터 개발 및 검증: 단상 유체 거동 해석

  • Park, Chan-Hee (Deep Subsurface Research Center, Geologic Environment Division, Korea Institute of Geosciences and Mineral Resources) ;
  • Kim, Taehyun (Deep Subsurface Research Center, Geologic Environment Division, Korea Institute of Geosciences and Mineral Resources) ;
  • Park, Eui-Seob (Deep Subsurface Research Center, Geologic Environment Division, Korea Institute of Geosciences and Mineral Resources) ;
  • Jung, Yong-Bok (Deep Subsurface Research Center, Geologic Environment Division, Korea Institute of Geosciences and Mineral Resources) ;
  • Bang, Eun-Seok (Mineral Resources Development Research Center, Mineral Resources Division, Korea Institute of Geosciences and Mineral Resources)
  • 박찬희 (한국지질자원연구원 지질환경연구본부 심지층연구센터) ;
  • 김태현 (한국지질자원연구원 지질환경연구본부 심지층연구센터) ;
  • 박의섭 (한국지질자원연구원 지질환경연구본부 심지층연구센터) ;
  • 정용복 (한국지질자원연구원 지질환경연구본부 심지층연구센터) ;
  • 방은석 (한국지질자원연구원 광물자원연구본부 자원탐사개발연구센터)
  • Received : 2019.11.25
  • Accepted : 2019.12.19
  • Published : 2019.12.31

Abstract

It is essential to comprehend coupled hydro-mechanical behavior to utilize subsurface for the recent demand for underground space usage. In this study, we developed a new simulator for numerical simulation as a tool for researching to consider the various domestic field and subsurface conditions. To develop the new module, we combined OpenGeoSys, one of the scientific software package that handles fluid mechanics (H), thermodynamics (T), and rock and soil mechanics (M) in the subsurface with FLAC3D, one of the commercial software for geotechnical engineering problems reinforced. In this simulator development, we design OpenGeoSys as a master and FLAC3D as a slave via a file-based sequential coupling. We have chosen Terzaghi's consolidation problem related to single-phase fluid flow at a saturated condition as a benchmark model to verify the proposed module. The comparative results between the analytical solution and numerical analysis showed a good agreement.

최근 대두되고 있는 지하공간 활용의 필요성 증대에 따라 지하공간의 안정적인 활용을 위해서는 수리-역학적 복합거동에 대한 이해가 필수적이다. 본 연구에서는 향후 국내 다양한 현장 및 지중 조건을 고려한 연구를 수행하는데 도구가 될 수 있는 수치해석을 위한 시뮬레이터를 개발하였다. 이를 위해 지중의 유체역학과 열역학, 역학을 해석하는 과학 소프트웨어 중 하나인 OpenGeoSys와 지반의 여러 역학적 문제들을 해석하는데 전문성을 지닌 FLAC3D를 연계하기로 하였다. 연동해석 기법에 대한 조사를 통해 OpenGeoSys를 주(master)로, FLAC3D를 종속(slave)으로 하여 연계 해석하는 파일 기반의 순차적 연계 방식으로 알고리즘을 개발하였다. 또한, 개발된 시뮬레이터의 검증을 위해 포화된 상태에서의 단상 유체 거동과 관련한 Terzaghi의 압밀 문제를 벤치마크 모델로 선정하여 비교 검증을 수행하였으며, 해석적 해와 수치해석의 결과가 잘 일치하는 것을 확인하였다.

Keywords

References

  1. Biot, M. A., 1941, General theory of three-dimensional consolidation, Journal of applied physics, Vol. 12, pp. 155-164. https://doi.org/10.1063/1.1712886
  2. Croucher, A. E. and M. J. O'Sullivan, 2013, Approaches to local grid refinement in TOUGH2 models, In 35th New Zealand Geothermal Workshop, Rotorua, Nov, pp. 17-20.
  3. Elyasi, A., Goshtasbi, K., Hashemolhosseini, H. and S. Barati, 2016, Coupled solid and fluid mechanics simulation for estimating optimum injection pressure during reservoir CO2-EOR, Structural Engineering and Mechanics, Vol. 59, No. 1, pp. 37-57. https://doi.org/10.12989/sem.2016.59.1.037
  4. David, C., Wong, T.-F., and Zhu, W. and J. Zhang, 1994, Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust, Pure and Applied Geophysics, Vol. 143, pp. 425-456. https://doi.org/10.1007/BF00874337
  5. Davies, J. and D. Davies, 1999, Stress-dependent permeability: characterization and modeling, SPE Journal.
  6. Dong, J.-J., Hsu, J.-Y., Wu, W.-J., Shimamoto, T., Hung, J.-H., Yeh, E.-C., Wu, Y.-H. and H. Sone, 2010, Stress-dependence of the permeability and porosity of sandstone and shale from TCDP hole-a, International Journal of Rock Mechanics and Mining Sciences, Vol. 47, pp. 1141-1157. https://doi.org/10.1016/j.ijrmms.2010.06.019
  7. Gutierrez, M. and A. Makurat, 1997, Coupled HTM modelling of cold water injection in fractured hydrocarbon reservoirs, International Journal of Rock Mechanics & Mining Sciences, Vol. 34, pp. 113-128.
  8. Itasca , 2013, FLAC-3D (Version 5.0) Online manual.
  9. Jha, B. and R. Juanes, 2014, Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering, Water Resources Research, Vol. 50, No. 5, pp. 3776-3808. https://doi.org/10.1002/2013WR015175
  10. Kim, J., Tchelepi, H. A. and R. Juanes, 2011, Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits, Computers Methods in Applied Mechanics and Engineering, Vol. 200, pp. 1591-1606. https://doi.org/10.1016/j.cma.2010.12.022
  11. Lee, C., Yoon, S., Lee, J. and G.Y. Kim, 2019a, Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils, Tunnel and Underground Space, Vol. 29, No. 1, pp. 38-51. https://doi.org/10.7474/TUS.2019.29.1.038
  12. Lee, J., Lee, C. and G.Y. Kim, 2019b, Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A, Tunnel and Underground Space, Vol. 29, No. 4, pp. 262-279.
  13. Lee, J.W., Kim, H.M., Yazdani, M. and E.S. Park, 2017, Influence of Design Parameters of Grout Injection in Rock Mass using Numerical Analysis, Tunnel and Underground Space, Vol. 27, No. 5, pp. 324-332. https://doi.org/10.7474/TUS.2017.27.5.324
  14. Park, C.-H., Beyer, C., Bauer, S. and O. Kolditz, 2008, A study of preferential flow in heterogeneous media using random walk particle tracking, Geosciences Journal, Vol. 12, pp. 285-297. https://doi.org/10.1007/s12303-008-0029-2
  15. Park, C.-H., Bottcher, N., Wang, W. and O. Kolditz, 2011, Are upwind techniques in multi-phase flow models necessary?, Journal of Computational Physics, Vol. 230, pp. 8304-8312. https://doi.org/10.1016/j.jcp.2011.07.030
  16. Park, J.W., Park, E.S., Kim, T., Lee, C. and J. Lee, 2018a, Hydro-mechanical modelling of fault slip induced by water injection: DECOVALEX-2019 Task B (Step 1), Tunnel and Underground Space, Vol. 28, No. 5, pp. 400-425. https://doi.org/10.7474/TUS.2018.28.5.400
  17. Park, J.W., Kim, T., Park, E.S. and C. Lee, 2018b, Coupled hydro-mechanical modelling of fault reactivation induced by water injection: DECOVALEX-2019 Task B (Benchmark Model Test), Tunnel and Underground Space, Vol. 28, No. 6, pp. 670-691. https://doi.org/10.7474/TUS.2018.28.6.670
  18. Rink, K., 2015, The OpenGeoSys data explorer manual.
  19. Rutqvist, J., Wu, Y.-S., Tsang, C.-F. and G. Bodvarsson, 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics & Mining Sciences, Vol. 39, pp. 429-442. https://doi.org/10.1016/S1365-1609(02)00022-9
  20. Taron, J., Elsworth, D. and K.-B. Min, 2009, Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media, International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 842-854. https://doi.org/10.1016/j.ijrmms.2009.01.008
  21. Terzaghi, K., Peck, R. B., and G. Mesri, 1996, Soil Mechanics in Engineering Practice, 3rd ed., John Wiley & Sons, New York.
  22. Zienkiewicz, O. C., Chan, A., Pastor, M., Schrefler, B. and T. Shiomi, 1999, Computational geomechanics, Citeseer.