DOI QR코드

DOI QR Code

Effects of Li-Sources on Microstructure of Metallurgically Pre-Lithiated SiOx for Li-Ion Battery's Anode

야금학적으로 Pre-Lithiation된 리튬이온전지 음극용 SiOx의 리튬소스가 미세구조에 미치는 영향

  • Lee, Jae Young (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Lee, Bora (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Kim, Nak-Won (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Jang, Boyun (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Kim, Junsoo (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University)
  • 이재영 (한국에너지기술연구원 분리변환소재연구실) ;
  • 이보라 (한국에너지기술연구원 분리변환소재연구실) ;
  • 김낙원 (한국에너지기술연구원 분리변환소재연구실) ;
  • 장보윤 (한국에너지기술연구원 분리변환소재연구실) ;
  • 김준수 (한국에너지기술연구원 분리변환소재연구실) ;
  • 김성수 (충남대학교 에너지과학기술대학원)
  • Received : 2018.10.04
  • Accepted : 2018.10.23
  • Published : 2019.01.01

Abstract

The effect of various lithium sources such as LiCl, LiOH, and Li-metal on the microstructure and electrochemical properties of granulated $SiO_x$ powders were investigated. Various lithium sources were metallurgically added for a passive pre-lithiation of $SiO_x$ to improve its low initial coulombic efficiency. In spite of using the same amount of Li in various sources, as well as the same process conditions, different lithium silicates were obtained. Moreover, irreversible phases were formed without reduction of $SiO_x$, which might be from additional oxygen incorporation during the process. Accordingly, there were no noticeable electrochemical enhancements. Nevertheless, the $Li_4SiO_4$ phase changes the initial electrochemical reaction, and consequently the relationship between the microstructure and electrochemical properties of metallurgically pre-lithiated $SiO_x$ could provide a guideline for the optimization of the performance of lithium ion batteries.

Keywords

JJJRCC_2019_v32n1_78_f0001.png 이미지

Fig. 1. Process flow chart for metallurgical pre-lithiation.

JJJRCC_2019_v32n1_78_f0002.png 이미지

Fig. 2. SEM images of pristine (a) and (b), and pre-lithiated SiOx granulates by using Li-metal (c) and (d) with different resolutions [inset of (b) shows SiOx NPs].

JJJRCC_2019_v32n1_78_f0003.png 이미지

Fig. 3. XRD patterns of pristine (SD) and pre-lithiated SiOx granulates by using various Li-sources (LC, LH, and LM).

JJJRCC_2019_v32n1_78_f0004.png 이미지

Fig. 4. Raman spectra of pristine (SD) and pre-lithiated SiOx granulates by using various Li-sources (LC, LH and LM) with that of single crystalline Si wafer as a reference.

JJJRCC_2019_v32n1_78_f0005.png 이미지

Fig. 5. The initial (a) voltage and (b) differential capacity profiles of pristine (SD) and pre-lithiated SiOx granulates by using various Li-sources (LC, LH and LM).

JJJRCC_2019_v32n1_78_f0006.png 이미지

Fig. 6. Cycle performances of pristine (SD) and pre-lithiated SiOx granulates by using various Li-sources (LC, LH and LM) process flow chart for metallurgical pre-lithiation.

Table 1. Phases and their relative intensity ratios of pristine (SD) and pre-lithiated SiOx granulates by using various Li-sources (LC, LH and LM). Each relative intensity is normalized with that of peak at 28.3° according to crystalline Si.

JJJRCC_2019_v32n1_78_t0001.png 이미지

References

  1. R. A. Huggins, J. Power Sources, 26, 109 (1989). [DOI: https://doi.org/10.1016/0378-7753(89)80020-5]
  2. M. N. Obrovac and L. J. Krause, J. Electrochem. Soc., 154, A103 (2007). [DOI: https://doi.org/10.1149/1.2402112]
  3. M. N. Obrovac and L. Christensen, Electrochem. Solid-State Lett., 7, A93 (2004). [DOI: https://doi.org/10.1149/1.1652421]
  4. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano, 6, 1522 (2012). [DOI: https://doi.org/10.1021/nn204476h]
  5. N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, Nano Lett., 12, 3315 (2012). [DOI: https://doi.org/10.1021/nl3014814]
  6. X. W. Zhang, P. K. Patil, C. Wang, A. J. Appleby, F. E. Little, and D. L. Cocke, J. Power Sources, 125, 206 (2004). [DOI: https://doi.org/10.1016/j.jpowsour.2003.07.019]
  7. M. Holzapfel, H. Buqa, L. J. Hardwick, M. Hahn, A. Wursig, W. Scheifele. P. Novak, R. Kotz, C. Veit, and F. M. Petrat, Electrochim. Acta, 52, 973 (2006). [DOI: https://doi.org/10.1016/j.electacta.2006.06.034]
  8. T. Chen, J. Wu, Q. Zhang, and X. Su, J. Power Sources, 363, 126 (2017). [DOI: https://doi.org/10.1016/j.jpowsour.2017.07.073]
  9. H. Takezawa, S. Ito, H. Yoshizawa, and T. Abe, Chem. Lett., 46, 1365 (2017). [DOI: https://doi.org/10.1246/cl.170556]
  10. M. W. Forney, M. J. Ganter, J. W. Staub, R. D. Ridgley, and B. J. Landi, Nano Lett., 13, 4158 (2013). [DOI: https://doi.org/10.1021/nl401776d]
  11. F. Holtstiege, P. Barmann, R. Nolle, M. Winter, and T. Placke, Batteries, 4, 4 (2018). [DOI: https://doi.org/10.3390/batteries4010004]
  12. A. Shellikeri, V. Watson, D. Adams, E. E. Kalu, J. A. Read, T. R. Jow, J. S. Zheng, and J. P. Zheng, J. Electrochem. Soc., 164, A3914 (2017). [DOI: https://doi.org/10.1149/2.1511714jes]
  13. Y. Domi, H. Usui, D. Iwanari, and H. Sakaguchi, J. Electrochem. Soc., 164, A1651 (2017). [DOI: https://doi.org/10.1149/2.1361707jes]
  14. Y. Liu, B. Yang, X. Dong, Y. Wang, and Y. Xia, Angew. Chem. Int. Ed., 56, 16606 (2017). [DOI: https://doi.org/10.1002/anie.201710555]
  15. J. Zhao, H. W. Lee, J. Sun, K. Yan, Y. Liu, W. Liu, Z. Lu, D. Lin, G. Zhou, and Y. Cui, Proc. Natl. Acad. Sci. U. S. A., 113, 7408 (2016). [DOI: https://doi.org/10.1073/pnas.1603810113]
  16. J. Zhao, J. Sun, A. Pei, G. Zhou, K. Yan, Y. Liu, D. Lin, and Y. Cui, Energy Storage Mater., 10, 275 (2018). [DOI: https://doi.org/10.1016/j.ensm.2017.06.013]
  17. Z. Wang, Y. Fu, Z. Zhang, S. Yuan, K. Amine, V. Battaglia, and G. Liu, J. Power Sources, 260, 57 (2014). [DOI: https://doi.org/10.1016/j.jpowsour.2014.02.112]
  18. A. Veluchamy, C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, K. H. Ha, H. M. Shin, B. S. Jin, H. S. Kim, S. I. Moon, and C. W. Park, J. Power Sources, 188, 574 (2009). [DOI: https://doi.org/10.1016/j.jpowsour.2008.11.137]
  19. P. K. Alaboina, J. S. Cho, M. J. Uddin, and S. J. Cho, Electrochim. Acta, 258, 623 (2017). [DOI: https://doi.org/10.1016/j.electacta.2017.11.107]
  20. Y. Duan, H. Pfeiffer, B. Li, I. C. Romero-Ibarra, D. C. Sorescu, D. R. Luebke, and J. W. Halley, Phys. Chem. Chem. Phys., 15, 13538 (2013). [DOI: https://doi.org/10.1039/c3cp51659h]
  21. N. Liu, L. Hu, M. T. McDowell, A. Jackson, and Y. Cui, ACS Nano, 5, 6487 (2011). [DOI: https://doi.org/10.1021/nn2017167]
  22. M. Marinaro, M. Weinberger, and M. Wohlfahrt-Mehrens, Electrochim. Acta, 206, 99 (2016). [DOI: https://doi.org/10.1016/j.electacta.2016.03.139]
  23. K. Yasuda, Y. Kashitani, S. Kizaki, K. Takeshita, T. Fujita, and S. Shimosaki, J. Power Sources, 329, 462 (2016). [DOI: https://doi.org/10.1016/j.jpowsour.2016.08.110]
  24. K. Ogata, E. Salager, C. J. Kerr, A. E. Fraser, C. Ducati, A. J. Morris, S. Hofmann, and C. P. Grey, Nat. Commun., 5, 3217 (2014). [DOI: https://doi.org/10.1038/ncomms4217]
  25. S. Periasamy, S. Venkidusamy, R. Venkatesan, J. Mayandi, J. Pearce, J. H. Selj, and R. Veerabahu, Z. Phys. Chem., 231, 1585 (2017). [DOI: https://doi.org/10.1515/zpch-2016-0961]
  26. B. Y. Jang, J. S. Lee, and J. S. Kim, J. Nanosci. Nanotechnol., 13, 3690 (2013). [DOI: https://doi.org/10.1166/ jnn.2013.7277]
  27. H. Yamamura, K. Nobuhara, S. Nakanishi, H. Iba, and S. Okada, J. Ceram. Soc. Jpn., 119, 855 (2011). [DOI: https://doi.org/10.2109/ jcersj2.119.855]