DOI QR코드

DOI QR Code

Stress Conversion Factor on Penetration Depth of Knoop Indentation for Assessment of Nano Residual Stress

나노 잔류응력 측정을 위한 비등방 압입자의 깊이별 응력환산계수 분석

  • Kim, Won Jun (School of Materials Science & Engineering, Research Center for Energy and Clean Technology, Andong National University) ;
  • Kim, Yeong Jin (School of Materials Science & Engineering, Research Center for Energy and Clean Technology, Andong National University) ;
  • Kim, Young-Cheon (School of Materials Science & Engineering, Research Center for Energy and Clean Technology, Andong National University)
  • 김원준 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 김영진 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 김영천 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2019.12.06
  • Accepted : 2019.12.26
  • Published : 2019.12.30

Abstract

Nanoindentation has been widely used for evaluating mechanical properties of nano-devices, from MEMS to packaging modules. Residual stress is also estimated from indentation tests, especially the Knoop indenter which is used for the determination of residual stress directionality. According to previous researches, the ratio of the two stress conversion factors of Knoop indentation is a constant at approximately 0.34. However, the ratio is supported by insufficient quantitative analyses, and only a few experimental results with indentation depth variation. Hence, a barrier for in-field application exists. In this research, the ratio of two conversion factors with variation in indentation depth using finite elements method has been attempted at. The magnitudes of each conversion factors were computed at uniaxial stress state from the modelled theoretical Knoop indenter and specimen. A model to estimate two stress conversion factor of the long and short axis of Knoop indenter at various indentation depths is proposed and analyzed.

연속압입시험법은 기존의 잔류응력 측정기법에 대한 대체기법으로 많은 분야에서 연구되고 있다. Knoop 압입자는 이러한 압입시험에서 잔류응력의 방향성을 결정하기 위해 이용되어 왔다. 기존 연구에 의하면 Knoop 압입자의 두 가지 응력환산계수의 비는 실험적으로 0.34로 고정되어 있는 것으로 알려져 있으나 이에 대하여 정량적인 분석이 부족하고, 깊이에 따른 실험결과는 미비하여 산업현장에 적용하기에 장벽이 존재한다. 본 연구에서는 연속압입시험법을 이용한 잔류응력의 방향성 측정을 위하여 응력환산계수의 비를 유한요소해석을 이용하여 측정하였다. 본 연구에서는 유한요소해석을 이용하여 압입깊이에 따른 응력환산계수의 비를 분석하고자 하였다. 이론적인 Knoop 압입자와 시편을 모델링하여 일축 잔류응력 상태에서 각각의 응력환산계수를 산출하였다. 압입자 장축 및 단축 방향의 응력환산계수를 주어진 깊이에 따라 예측할 수 있는 모델을 제시하였고, 그 원인을 분석하였다.

Keywords

References

  1. S.-H. Lee, and J.-H. Lee, "Electroplating of High Wear Resistant Rhodium using Pulse Current Plating Method", J. Microelectron. Packag. Soc., 26(2), 51 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.0051
  2. S.-Y. Cheon, Y.-M. Rhym, and J.-H. Lee, "The Effects of Additives and Residual Stresses on the Electroless Nickel Plating on Carbon Substrate", J. Microelectron. Packag. Soc., 18(4), 43 (2011). https://doi.org/10.6117/KMEPS.2011.18.4.043
  3. C. Kim, H. Choi, M. Kim, and T.-S. Kim, "Packaging Substrate Bending Prediction due to Residual Stress", J. Microelectron. Packag. Soc., 20(1), 21 (2013). https://doi.org/10.6117/kmeps.2013.20.1.021
  4. N. E. Yeo, W. K. Cho, D.-I. Kim, and M. Y. Jeong, "A Study on Enhanced of Anti-scratch performance of Nanostructured Polymer Surface", J. Microelectron. Packag. Soc., 24(3), 41 (2017). https://doi.org/10.6117/kmeps.2017.24.3.041
  5. J.-G. Seol, and B.-J. Kim, "Electrical Reliability of ITO Film on Flexible Substrate During bending Deformations and Bending Fatigue", J. Microelectron. Packag. Soc., 24(4), 47 (2017). https://doi.org/10.6117/KMEPS.2017.24.4.047
  6. Y. Y. Kwon, and B.-J. Kim, "Mechanical and Electrical Failure of ITO Film with Different Shape during Twisting Deformation", J. Microelectron. Packag. Soc., 24(4), 53 (2017). https://doi.org/10.6117/KMEPS.2017.24.4.053
  7. J.-Y. Choi, D.-W. Park, and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014). https://doi.org/10.6117/kmeps.2014.21.4.125
  8. G. G. Stoney, "The Tension of Metallic Films Deposited by Electrolysis", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 172 (1909).
  9. I. C. Noyan, and J. B. Cohen, "Residual stress measurement by diffraction and interpretation", Materials Research and Engineering, Springer-Verlag New York Inc. (1987).
  10. S. Y. Baek, and D. H. Bae, "Fracture Mechanics Approach to X-Ray Diffraction Method for Spot Welded Lap Joint Structure of Rolled Steel Considered Residual Stress", The Korans Society of Mechanical Engineers, 35(11), 7 (2011).
  11. Y.-H. Lee, and D. Kwon, "Estimation of biaxial surface stress by instrumented indentation with sharp indenters", Acta Mater, 52, 1555 (2004). https://doi.org/10.1016/j.actamat.2003.12.006
  12. Y.-C. Kim, H.-J. Ahn, D. Kwon, and J.-Y. Kim, "Modeling and experimental verification for non-equibiaxial residual stress evaluated by Knoop indentations", Metals and Materials International, 22(1), 12 (2016). https://doi.org/10.1007/s12540-015-5515-2
  13. M.-J. Choi, S.-K. Kang, I. Kang, and D. Kwon, "Evaluation of nonequibiaxial residual stress using Knoop indenter", J. Mater. Res, 1, 121 (2012).
  14. K.-H. Kim, "Evaluation of Multi-scale Indentation Tensile Properties of Metallic Materials Considering Strain Hardening Characteristics and Stress Field Analysis", in Ph.D. Thesis, Seoul National University, Seoul (2015).
  15. S. H. Kim, B. W. Lee, Y. Choi, and D. Kwon, "Quantitative determination of contact depth during spherical indentation of metallic materials - a FEM study", Materials Science and Engineering, 415, 59 (2006). https://doi.org/10.1016/j.msea.2005.08.217
  16. S.-K. Kang, Y.-C. Kim, J.-W. Lee, D. Kwon, and J.-Y. Kim, "Effect of contact angle on contact morphology and Vickers hardness measurement in instrumented indentation testing", International Journal of Mechanical Sciences, 85, 104 (2014). https://doi.org/10.1016/j.ijmecsci.2014.05.002
  17. J.-H. Kim, H.-J. Ahn, S.-W. Jeon, J. S. Lee, M.-J. Choi, K.-H. Kim, D. Ro, and D. Kwon, "Estimation of Stress-Free State From Hardness Ratio for Evaluation of Residual Stress Using Instrumented Indentation Testing (IIT)", ASME Pressure Vessels and Piping Conference, 5 (2015).