DOI QR코드

DOI QR Code

Point Defect Engineering Approaches to Enhance the Performance of Thermoelectric Materials

열전소재 성능 증대를 위한 점결함 제어 전략

  • Kim, Hyun-Sik (Department of Materials Science and Engineering, Hongik University) ;
  • Jeong, Hyung Mo (Department of Materials Science and Engineering, Kangwon National University) ;
  • Choi, Soon-Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Lee, Kyu Hyoung (Department of Materials Science and Engineering, Yonsei University)
  • 김현식 (홍익대학교 신소재공학과) ;
  • 정형모 (강원대학교 재료공학전공) ;
  • 최순목 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 이규형 (연세대학교 신소재공학과)
  • Received : 2019.12.19
  • Accepted : 2019.12.26
  • Published : 2019.12.30

Abstract

Independent control of electronic and thermal transport behaviors is one of the most effective approaches to enhance the performance of thermoelectric materials. To address this, many researches on the relationship between defect structures and thermoelectric properties have been carried out since defects are intrinsic ingredients of polycrystalline materials. Recently, experimental results of simultaneously improved electronic and thermal transport properties have been reported via the formation of 0-dimensional point defects. Here, theoretical backgrounds to the engineering of electronic and thermal transport behaviors by the formation of point defects are discussed and related experimental considerations are also presented in order to provide a practical guide for the development of highperformance thermoelectric materials.

소재의 전기전도 거동과 열전도 거동을 독립적으로 제어하는 기술은 열전소재의 성능증대를 위한 효과적인 전략 중 하나로 인식되고 있다. 이를 구현하기 위해 다결정 소재가 근본적으로 포함하고 있는 결함구조와 열전소재의 물성과의 상관관계에 대한 수많은 연구가 진행되고 있으며, 최근 0 차원의 점결함 형성에 의해 전기전도 특성을 증대함과 동시에 열전도 특성을 저감하는 결과가 보고되고 있다. 본 논문에서는 점결함 형성에 의한 소재의 전기전도 거동 및 열전도 거동 변화에 대해 이론적 고찰을 진행하고, 벌크 열전소재에서 실험적으로 구현된 결과와 연계하여 고성능 열전소재 개발에 필수적인 소재설계 지침에 대한 실효적인 정보를 제공하고자 한다.

Keywords

References

  1. S. B. Riffat, and X. Ma, "Improving the coefficient of performance of thermoelectric cooling systems: a review", Int. J. Energy Res., 28(9), 753 (2004). https://doi.org/10.1002/er.991
  2. P. Anandan, M. Omprakash, M. Azhagurajan, M. Arivanandhan, D. Rajan Babu, T. Koyama, and Y. Hayakawa, "Tailoring bismuth telluride nanostructures using a scalable sintering process and their thermoelectric properties", CrystEngComm, 16(34), 7956 (2014). https://doi.org/10.1039/C4CE00837E
  3. M. J. Costello, S. Johnson, K. O. Gilliland, C. D. Freel, and W. C. Fowler, "Predicted light scattering from particles observed in human age related nuclear cataracts using mie scattering theory", Invest. Ophthalmol. Vis. Sci., 48, 303 (2007). https://doi.org/10.1167/iovs.06-0480
  4. J. Callaway, and H. C. von Baeyer, "Effect of Point Imperfections on Lattice Thermal Conductivity", Phys. Rev., 120(4), 1149 (1960). https://doi.org/10.1103/PhysRev.120.1149
  5. B. Abeles, "Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures", Phys. Rev., 131(5), 1906 (1963). https://doi.org/10.1103/PhysRev.131.1906
  6. K. H. Lee, S.-M. Choi, J. W. Roh, S. Hwang, S.-I. Kim, W. H. Shin, H. J. Park, J. H. Lee, S. W. Kim, and D. J. Yang, "Enhanced Thermoelectric Performance of P-Type Bi-Sb-Te Alloys by Codoping with Ga and Ag", J. Electron. Mater., 44(6), 1531 (2015). https://doi.org/10.1007/s11664-014-3446-1
  7. G. Meisner, D. Morelli, S. Hu, J. Yang, and C. Uher, "Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members", Phys. Rev. Lett., 80(16), 3551 (1998). https://doi.org/10.1103/PhysRevLett.80.3551
  8. B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, "Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites", Nano Lett., 12(4), 2077 (2012). https://doi.org/10.1021/nl3003045
  9. D. Wu, Y. Pei, Z. Wang, H. Wu, L. Huang, L.-D. Zhao, and J. He, "Significantly Enhanced Thermoelectric Performance in n-type Heterogeneous BiAgSeS Composites", Adv. Funct. Mater., 24(48), 7763 (2014). https://doi.org/10.1002/adfm.201402211
  10. Y.-L. Pei, H. Wu, D. Wu, F. Zheng, and J. He, "High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping", Journal of the American Chemical Society, 136(39), 13902 (2014). https://doi.org/10.1021/ja507945h
  11. G. J. Snyder, and E. S. Toberer, "Complex Thermoelectric Materials", Nat. Mater., 7(2), 105 (2008). https://doi.org/10.1038/nmat2090
  12. H.-S. Kim, N. A. Heinz, Z. M. Gibbs, Y. Tang, S. D. Kang, and G. J. Snyder, "High thermoelectric performance in $(Bi_{0.25}Sb_{0.75})_2Te_3$ due to band convergence and improved by carrier concentration control", Mater. Today, 20(8), 452 (2017). https://doi.org/10.1016/j.mattod.2017.02.007
  13. H. Wang, Y. Pei, A. D. LaLonde, and G. J. Snyder, "Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe", Proc. Natl. Acad. Sci., 109(25), 9705 (2012).
  14. Y. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H.-S. Kim, M. B. Nardelli, S. Curtarolo, and G. J. Snyder, "Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in $CoSb_3$ skutterudites", Nat. Mater., 14, 1223 (2015). https://doi.org/10.1038/nmat4430
  15. Y. Pei, H. Wang, and G. J. Snyder, "Band Engineering of Thermoelectric Materials", Adv. Mater., 24(46), 6125 (2012). https://doi.org/10.1002/adma.201202919
  16. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, "Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states", Science, 321, 554 (2008). https://doi.org/10.1126/science.1159725
  17. Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, and Z. Ren, "Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide", Energy Environ. Sci., 5, 5246 (2012). https://doi.org/10.1039/C1EE02465E
  18. C. M. Jaworski, V. Kulbachinskii, and J. P. Heremans, "Resonant level formed by tin in $Bi_2Te_3$ and the enhancement of room-temperature thermoelectric power", Phys. Rev. B., 80, 233201 (2009). https://doi.org/10.1103/PhysRevB.80.233201
  19. J. Y. Choi, and T. S. Oh, "Thermoelectric Properties of the p-type $(Bi_{0.2}Sb_{0.8})_2Te_3$ with Variation of the Hot-Pressing Temperature", J. Microelectron. Packag. Soc., 18(4), 33 (2001). https://doi.org/10.6117/KMEPS.2011.18.4.033
  20. D. H. Park, M. R. Roh, M. Y. Kim, and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2000).