DOI QR코드

DOI QR Code

Observation of Diverse Aluminum Oxide Structures in a Phosphoric Acid Solution according to the Applied Anodization Voltage

인산용액에서 양극산화 인가전압에 따른 알루미늄 산화피막 성장 관찰

  • Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-Eui University)
  • Received : 2019.03.04
  • Accepted : 2019.03.29
  • Published : 2019.03.30

Abstract

To date, porous alumina structures have been implemented by electrochemical anodization technique. The anodizing methods can easy to make a porous aluminum oxide film with a regular arrangement, but oxide film with complex structure type such as pillar-on-pore is relatively difficult to implement. Therefore, this study aims to observe the change of anodized oxide pore size, thickness, and structure in a phosphoric acid solution according to applied anodization voltage conditions. For the implementation of hybrid composite oxide structures, it is possible to create by modulating anodization voltage. The experimental conditions were performed at the applied anodization voltage of 100 V and 120 V in 10% phosphoric acid solution, respectively. The experimental results were able to observe the structure of oxides in the form of porous and composite structures (pillar-on-pore), depending on each condition.

현재까지 다공성 알루미나 구조물은 대표적으로 양극산화 방법으로 구현되어 오고 있다. 양극산화 방법을 통해 규칙적인 배열을 가진 알루미늄 산화 피막은 쉽게 만들 수 있지만, 복합 구조물 형태를 가진 산화피막은 상대적으로 구현하기가 어렵다. 본 연구는 인산용액에서 양극산화 인가전압에 따른 피막 기공 크기, 두께 및 구조물 형태 변화를 관찰하고자 한다. 다층 복합 산화물 구조물 구현을 위해 양극산화 인가전압 조건을 조절하였고, 실험 조건은 10% 인산용액에서 양극산화 인가전압 100 V와 120 V로 각각 수행하였다. 실험 결과는 각 조건에 따라 다공성 구조물과 복합 구조물 형태의 산화물 구조를 구현할 수 있었다.

Keywords

MOKRBW_2019_v26n1_35_f0001.png 이미지

Fig. 1. The procedure of electrochemical anodization technique: (a) Aluminum, (b) 1st Anodization step, (c) Chemical etching for anodic oxide removal, (d) 2nd Anodization step.

MOKRBW_2019_v26n1_35_f0002.png 이미지

Fig. 2. FE-SEM of surface morphology and thickness of the aluminum oxide prepared by modulating 1st anodization voltage for 30 min at (a, b) 100 V, (c, d) 120 V.

MOKRBW_2019_v26n1_35_f0003.png 이미지

Fig. 3. Variation of pore thickness according to 1st anodization time for 30 min at 100 and 120 V.

MOKRBW_2019_v26n1_35_f0004.png 이미지

Fig. 4. FE-SEM of surface morphology after chemical etching (AAO removal step) at (a, b) 100 V, (c, d) 120 V.

MOKRBW_2019_v26n1_35_f0005.png 이미지

Fig. 5. FE-SEM of surface morphology and thickness of the aluminum oxide prepared by modulating 2nd anodization voltage for 20 min at (a, b) 100 V and (c, d) 120 V.

MOKRBW_2019_v26n1_35_f0006.png 이미지

Fig. 6. Variation of pore thickness according to 2nd anodization time for 20 min at 100 and 120 V.

References

  1. C. Vargel, "Corrosion of Aluminum", Elsevier Science 2nd Ed, pp.9 and 88 (2004).
  2. J. R. Davis, "Aluminum and aluminum alloys", ASM international, 3 (1993).
  3. H. Ji and C. Jeong, "Study on Corrosion and Oxide Growth Behavior of Anodized Aluminum 5052 Alloy", J. Korean Inst. Surf. Eng., 51(6), 372 (2018). https://doi.org/10.5695/JKISE.2018.51.6.372
  4. S. Tajima, "Anodic oxidation of aluminum", Advances in Corrosion Science and Technology, 1, 229 (1970). https://doi.org/10.1007/978-1-4615-8252-6_4
  5. A. Belwalkar, "Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes", Journal of Membrane Science, 319, 192 (2008). https://doi.org/10.1016/j.memsci.2008.03.044
  6. R. Furneaux, W. R. Rigby, and A. P. Davidson, "The Formation of Controlled-Porosity Membranes from Anodically Oxidized Aluminium", Nature, 337, 147 (1989). https://doi.org/10.1038/337147a0
  7. H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina", Science, 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466
  8. C. Jeong and C.-H. Choi, "Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency", ACS Applied Materials & Interfaces, 4, 842 (2012). https://doi.org/10.1021/am201514n
  9. C. Jeong and C.-H. Choi, "Three-Dimensional (3D) Anodic Aluminum Surfaces by Modulating Electrochemical Method", J. Korean Inst. Surf. Eng., 50(6), 427 (2017). https://doi.org/10.5695/JKISE.2017.50.6.427
  10. F. Keller, M. S. Hunter, and D. L. Robinson, "Structural features of oxide coatings on aluminum", J. Electrochemical Soc., 100, 411 (1953). https://doi.org/10.1149/1.2781142
  11. D. J. Wn, Thomas C. Downie, and C. W. Goulding, "Anodic oxide films on aluminum", Chemical Reviews, 69, 365 (1969). https://doi.org/10.1021/cr60259a005
  12. S. Moon, "Anodic Oxidation Treatment Methods of Metals", J. Korean Inst. Surf. Eng., 51, 1 (2018). https://doi.org/10.5695/JKISE.2018.51.1.1
  13. W. Lee, R. Ji, U. Gosele, and K. Nielsch, "Fast fabrication of long-range ordered porous alumina membranes by hard anodization", Nature Materials, 5, 741 (2006). https://doi.org/10.1038/nmat1717
  14. M. A. Hadi, A. S. Habiballah, and A. M. M. Jani, "The effect of applied voltage and anodisation time on anodized aluminum oxide nanostructures", Materials Science Forum, 819, 103 (2015). https://doi.org/10.4028/www.scientific.net/MSF.819.103
  15. Y. B. Son, "Improving the Wettability of Polymeric Surfaces and Surface Modification of Ceramic by Ion Beam in Reactive gases Environments", J. Microelectron. Packag. Soc., 3(1), 11 (1996).
  16. B. J. Cho, T. Y. Kwon, H. M. Kim, P. Venkatesh, M. S. Park, and J. G. Park, "Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications", J. Microelectron. Packag. Soc. 19(1), 61 (2012). https://doi.org/10.6117/kmeps.2012.19.1.061

Cited by

  1. 알루미늄 6061 합금의 양극 산화 인가 전압과 시간에 따른 표면의 산화피막층 형성 거동 vol.34, pp.1, 2019, https://doi.org/10.4313/jkem.2021.34.1.68
  2. 스테인리스 스틸의 표면 산화피막 성장과 내부식성 상관관계 vol.20, pp.3, 2019, https://doi.org/10.14773/cst.2021.20.3.152