DOI QR코드

DOI QR Code

Validation of a non-linear hinge model for tensile behavior of UHPFRC using a Finite Element Model

  • Mezquida-Alcaraz, Eduardo J. (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Navarro-Gregori, Juan (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Lopez, Juan Angel (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia) ;
  • Serna-Ros, Pedro (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia)
  • Received : 2018.08.15
  • Accepted : 2019.01.15
  • Published : 2019.01.25

Abstract

Nowadays, the characterization of Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) tensile behavior still remains a challenge for researchers. For this purpose, a simplified closed-form non-linear hinge model based on the Third Point Bending Test (ThirdPBT) was developed by the authors. This model has been used as the basis of a simplified inverse analysis methodology to derive the tensile material properties from load-deflection response obtained from ThirdPBT experimental tests. In this paper, a non-linear finite element model (FEM) is presented with the objective of validate the closed-form non-linear hinge model. The state determination of the closed-form model is straightforward, which facilitates further inverse analysis methodologies to derive the tensile properties of UHPFRC. The accuracy of the closed-form non-linear hinge model is validated by a robust non-linear FEM analysis and a set of 15 Third-Point Bending tests with variable depths and a constant slenderness ratio of 4.5. The numerical validation shows excellent results in terms of load-deflection response, bending curvatures and average longitudinal strains when resorting to the discrete crack approach.

Keywords

Acknowledgement

Supported by : State Research Agency of Spain

References

  1. Abrishambaf, A., Pimentel, M. and Nunes, S. (2017). "Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites", Cement Concrete Res., 97, 28-40. https://doi.org/10.1016/j.cemconres.2017.03.007
  2. Baby, F., Graybeal, B., Marchand, P. and Toutlemonde, F. (2012). "Proposed flexural test method and associated inverse analysis for ultra-high-performance fiber-reinforced concrete", ACI Mater. J., 109(5), 545-555.
  3. Baby, F., Graybeal, B., Marchand, P. and Toutlemonde, F. (2013). "UHPFRC tensile behavior characterization: Inverse analysis of four-point bending test results", Mater. Struct., Mater. Constr., 46(8), 1337-1354. https://doi.org/10.1617/s11527-012-9977-0
  4. Casanova, P. and Rossi, P. (1996). "Analysis of metallic fibrereinforced concrete beams submitted to bending", Mater. Struct., 29(6), 354-361. https://doi.org/10.1007/BF02486343
  5. DIANA (Software). (2017). "User's Manual-Release 10.2", TNO DIANA, The Netherlands, https://dianafea.com/manuals/d102/Diana.html.
  6. Graybeal, B. and Baby, F. (2013). "Development of direct tension test method for ultra-high-performance fiber-reinforced concrete", ACI Mater. J., 110(110), 177-186.
  7. Grtiger, J., Tue, N.V. and Wille, K. (2012). "Bending Behaviour and Variation of Flexural Parameters of UHPFRC", 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel University Press GmbH, 419-426.
  8. Guo, W., Fan, W., Shao, X., Shen, D. and Chen, B. (2018). "Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations", Compos. Struct., 185, 307-326. https://doi.org/10.1016/j.compstruct.2017.11.022
  9. Jirasek, M. (2017). "Modeling of localized inelastic deformation", Short Course Given by Prof. M. Jirasek at Czech Technical University, 18-22/09/2017, Prague, September, 0-373.
  10. Kanakubo, T. (2006). "Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites", J. Adv. Concrete Technol., 4(1), 3-17. https://doi.org/10.3151/jact.4.3
  11. Kang, S.T., Lee, Y., Park, Y.D. and Kim, J.K. (2010). "Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber", Compos. Struct., 92(1), 61-71. https://doi.org/10.1016/j.compstruct.2009.06.012
  12. Lampropoulos, A.P., Paschalis, S.A., Tsioulou, O.T. and Dritsos, S.E. (2016). "Strengthening of reinforced concrete beams using ultra high performance fibre reinforced concrete (UHPFRC)", Eng. Struct., 106, 370-384. https://doi.org/10.1016/j.engstruct.2015.10.042
  13. Lee, J.H., Hong, S.G., Joh, C., Kwahk, I. and Lee, J.W. (2017). "Biaxial tension-compression strength behaviour of UHPFRC in-plane elements", Mater. Struct., Mater. Constr., 50(1), 20. https://doi.org/10.1617/s11527-016-0918-1
  14. Liu, J., Han, F., Cui, G., Zhang, Q., Lv, J., Zhang, L. and Yang, Z. (2016). "Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete", Constr. Build. Mater., 121, 310-318. https://doi.org/10.1016/j.conbuildmat.2016.05.039
  15. Lopez, J.A. (2017). "Characterisation of the tensile behaviour OF UHPFRC by means of four-point bending tests", Universitat Politecnica de Valencia, Valencia, Spain.
  16. Lopez, J.A ., Serna, P., Navarro-Gregori, J. and Camacho, E. (2015a). "An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC", Mater. Struct., 48(11), 3703-3718. https://doi.org/10.1617/s11527-014-0434-0
  17. Lopez, J.A ., Serna, P., Navarro-Gregori, J. and Coll, H. (2016). "A simplified five-point inverse analysis method to determine the tensile properties of UHPFRC from unnotched four-point bending tests", Compos. Part B: Eng., 91, 189-204. https://doi.org/10.1016/j.compositesb.2016.01.026
  18. Lopez, J., Serna, P., Navarro-Gregori, J. and Coll, H. (2015b). "Comparison between an inverse analysis procedure results and experimental measurements obtained from UHPFRC Four-Point Bending Tests", Seventh International RILEM Conference on High Performance Fiber Reinforced Cement Composites (HPFRCC7), H.G. H.W. Reinhardt, G.J. Parra-Montesinos, ed., RILEM Publications SARL, 185-192.
  19. Maalej, M. and Li, V.C. (1994). "Flexural strength of fiber cementitious composites", ASCE J. Mater. Civil Eng., ASCE, 6(3), 390-406. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:3(390)
  20. Mahmud, G.H., Yang, Z. and Hassan, A.M.T. (2013). "Experimental and numerical studies of size effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) beams", Constr. Build. Mater., 48, 1027-1034. https://doi.org/10.1016/j.conbuildmat.2013.07.061
  21. Olesen, J.F. (2001). "Fictitious crack propagation in fiber-reinforced concrete beams", J. Eng. Mech., 127(3), 272-280. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(272)
  22. Ostergaard, L., Walter, R. and Olesen, J.F. (2005). "Method for determination of tensile properties of engineered cementitious composites (ECC)", Construction Materials: Proceedings of ConMat'05 and Mindess Symposium, 74.
  23. Pedersen, C. (1996). "New production process, materials and calculation tecniques for fiber reinforced concrete pipes", PhD Thesis, Department of Structural Engineering and Materials.
  24. Pyo, S. and El-Tawil, S. (2015). "Capturing the strain hardening and softening responses of cementitious composites subjected to impact loading", Constr. Build. Mater., 81, 276-283. https://doi.org/10.1016/j.conbuildmat.2015.02.028
  25. Pyo, S., El-Tawil, S. and Naaman, A.E. (2016). "Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates", Cement Concrete Res., 88, 144-156. https://doi.org/10.1016/j.cemconres.2016.07.003
  26. Pyo, S., Wille, K., El-Tawil, S. and Naaman, A.E. (2015). "Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension", Cement Concrete Compos., 56, 15-24. https://doi.org/10.1016/j.cemconcomp.2014.10.002
  27. Qian, S. and Li, V.C. (2007). "Simplified inverse method for determining the tensile strain capacity of strain hardening cementitious composites", J. Adv. Concrete Technol., 5(2), 235-246. https://doi.org/10.3151/jact.5.235
  28. Rahdar, H. and Ghalehnovi, M. (2016). "Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar", Comput. Concrete, 18(1), 139-154. https://doi.org/10.12989/cac.2016.18.1.139
  29. Rigaud, S., Chanvillard, G. and Chen, J. (2012). "Characterization of bending and tensile behavior of ultra-high performance concrete containing glass fibers", High Performance Fiber Reinforced Cement Composites 6: HPFRCC 6, Eds. G.J. Parra-Montesinos, H.W. Reinhardt and A.E. Naaman, Springer Netherlands, Dordrecht, 373-380.
  30. RILEM TC 162-TDF. (2002). "Recommendations of RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete Design of steel fibre reinforced concrete using the sigma-epsilon method: principles and applications", Mater. Struct., RILEM, 35(249), 262-278. https://doi.org/10.1617/13837
  31. Rots, J.G. (2002). "Comparative study of crack models", Proceedings of the 3rd DIANA World Conference, Finite Elements in Civil Engineering Applications, 17-28.
  32. Rots, J.G. and Blaauwendraad, J. (1989). "Crack models for concrete, discrete or smeared? Fixed, multi-directional or rotating?", HERON, 34(1), Delft University of Technology.
  33. Sadouki, H., Denarie, E. and Bruhwiler, E. (2017). "Validation of a FEA model of structural response of RC-cantilever beams strengthened with a (R-) UHPFRC layer", Constr. Build. Mater., 140, 100-108. https://doi.org/10.1016/j.conbuildmat.2017.02.090
  34. Singh, M., Sheikh, A.H., Mohamed Ali, M.S., Visintin, P. and Griffith, M.C. (2017), "Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams", Constr. Build. Mater., 138, 12-25. https://doi.org/10.1016/j.conbuildmat.2017.02.002
  35. Soranakom, C. and Mobasher, B. (2007). "Closed-form moment-curvature expressions for homogenized fiber-reinforced concrete", ACI Mater. J., 104(4), 351-359.
  36. Stang, H. and Olesen, J.F. (1998). "On the interpretation of bending tests on FRC-materials", Fracture Mechanics of Concrete Structures, AEDIFICATIO Publishers, D-79104 Freiburg, Germany.
  37. Switek, A. (2008). "Smeared crack modelling of fracture in materials with significant bulk energy dissipation", Ecole Polytechnique Federale de Lausanne, Lausanne, 0-14.
  38. Tran, N.T., Tran, T.K. and Kim, D.J. (2015). "High rate response of ultra-high-performance fiber-reinforced concretes under direct tension", Cement Concrete Res., 69, 72-87. https://doi.org/10.1016/j.cemconres.2014.12.008
  39. Tysmans, T., Wozniak, M., Remy, O. and Vantomme, J. (2015). "Finite element modelling of the biaxial behaviour of high-performance fibre-reinforced cement composites (HPFRCC) using concrete damaged plasticity", Finite Elem. Anal. Des., 100, 47-53. https://doi.org/10.1016/j.finel.2015.02.004
  40. Uchida, Y. and Kurihara, N. (1995). "Determination of tension softening diagrams of various kinds of concrete by means of numerical analysis", Fracture Mechanics of Concrete Structures - FraMcoS 2, AEDIFICATIO Unterengstringin, 17-30.
  41. Wan, L., Wendner, R., Liang, B. and Cusatis, G. (2016). "Analysis of the behavior of ultra high performance concrete at early age", Cement Concrete Compos., 74(15), 120-135. https://doi.org/10.1016/j.cemconcomp.2016.08.005
  42. Wille, K., El-Tawil, S. and Naaman, A.E. (2014). "Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading", Cement Concrete Compos., 48, 53-66. https://doi.org/10.1016/j.cemconcomp.2013.12.015
  43. Wille, K., Kim, D.J. and Naaman, A.E. (2010). "Strain-hardening UHP-FRC with low fiber contents", Mater. Struct., 44(3), 583-598. https://doi.org/10.1617/s11527-010-9650-4
  44. Yang, I.H., Joh, C. and Kim, B.S. (2010). "Structural behavior of ultra high performance concrete beams subjected to bending", Eng. Struct., 32(11), 3478-3487. https://doi.org/10.1016/j.engstruct.2010.07.017
  45. Yoo, D.Y. and Banthia, N. (2015). "Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars", Comput. Concrete, 16(5), 759-774. https://doi.org/10.12989/cac.2015.16.5.759
  46. Yoo, D.Y., Kang, S.T., Banthia, N. and Yoon, Y.S. (2017). "Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams", Int. J. Damage Mech., 26(5), 735-757. https://doi.org/10.1177/1056789515612559
  47. Yoo, D.Y., Zi, G., Kang, S.T. and Yoon, Y.S. (2015). "Biaxial flexural behavior of ultra-high-performance fiber-reinforced concrete with different fiber lengths and placement methods", Cement Concrete Compos., 63, 51-66. https://doi.org/10.1016/j.cemconcomp.2015.07.011

Cited by

  1. Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper vol.28, pp.3, 2021, https://doi.org/10.12989/cac.2021.28.3.275