DOI QR코드

DOI QR Code

Hydrophilic Extracts of the Bark from Six Pinus Species

  • Masendra, Masendra (Department of Forest Products Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Ashitani, Tatsuya (Faculty of Agriculture, Yamagata University) ;
  • Takahashi, Koetsu (Faculty of Agriculture, Yamagata University) ;
  • Susanto, Mudji (Center for Forest Biotechnology and Tree Improvement Research) ;
  • Lukmandaru, Ganis (Department of Forest Products Technology, Faculty of Forestry, Universitas Gadjah Mada)
  • Received : 2017.11.16
  • Accepted : 2018.12.31
  • Published : 2019.01.25

Abstract

Pine barks are important biomass resources because they are utilised in the production of pine wood and rosins. However, no chemical study has been conducted on the hydrophilic status of pine barks in Indonesia. This aim of this study is to explore the hydrophilic extracts of the barks from six Pinus species (P. elliotii, P. caribeae, P. oocarpa, P. merkusii P. montezumae, and P. insularis). The hydrophilics of pine barks were analysed using gas chromatography-mass spectrometry. The presence of polyphenol contents in the ethanol extracts obtained from the barks of six Pinus species was determined using the tannin-formaldehyde method, Folin-Cioucalteu assay, and vanillin-HCl assay. The ethanol and hot water soluble extractives derived from inner barks were higher in quantity when compared to those derived from the outer bark samples. The polyphenol measurement showed that the highest value of total phenol content was derived from the outer bark of P. montezumae whereas those of the total phenol and tannin- formaldehyde contents were derived from the inner and outer barks of P. oocarpa. GC-MS analysis revealed that nitrogenous compounds are dominant constituents in the inner and outer barks of the six species, followed by sugars and monophenolics, respectively.

Keywords

HMJGBP_2019_v47n1_80_f0001.png 이미지

Fig. 1. Ethanol extractive content (a) and hot water extractive content (b) of bark of six pine species (weight percentage of oven-dry wood, average from two measurements).

HMJGBP_2019_v47n1_80_f0002.png 이미지

Fig. 2. Correlation between tannin-formaldehyde and total phenols (a) and total flavanols (b).

HMJGBP_2019_v47n1_80_f0003.png 이미지

Fig. 3. Chromatogram of ethanol extract from P. merkusii, peak 1. Pyrazine (5.4 min), peak 2. Glycerol (5.5 min), peak 3. N,O-Bis carbamate (6.2 min), peak 4. Methylmalonic monoamide (6.8 min), peak 5. 2,5-Furandione (7.8 min), peak 6. Monoamidomalonic acid (9.9 min), peak 7. Veratric acid (IS: Internal Standard), peak 8. Malonyldiamide (14.5 min), peak 9. N-Acetylglutamine (15.5 min), peak 10. Xylitol (15.8 min), peak 11. D-Psicopyranose (isomer 2) (17.8 min), peak 12. D-Pinitol (18.1 min), peak 13. Glucopyranose (19.1 min), peak 14. D-Mannitol (20.2 min), peak 15. D-Pinitol, isomer (20.6 min), peak 16. Glucopyranose (21.1 min), peak 17. ), Thymol-.beta.- d-glucopyranoside (33.8 min), peak 18. TMS catechol lactate (35.3 min), peak 19. Normorphine (37.5 min).

HMJGBP_2019_v47n1_80_f0004.png 이미지

Fig. 4. Mass spectra of hydroxytyrosol and ferulic acid TMS from the bark of six Pinus species.

Table 1. Total phenols, flavanols, tannins, and pH of inner and outer bark of six Pinus species (average of two measurements; standard deviation)

HMJGBP_2019_v47n1_80_t0001.png 이미지

Table 2. Hydrophilic constituents of the inner and outer barks identified by GC-MS (percentage of dry-weight extract, average of two measurements)

HMJGBP_2019_v47n1_80_t0002.png 이미지

Table. 3. Mass spectra of sugar TMS derivatives detected in the samples

HMJGBP_2019_v47n1_80_t0003.png 이미지

References

  1. Agustini, B.C., de Lima, D.B., Bonfim, T.M.B. 2014. Composition of amino acids and bioactive amines in common wines of Brazil, Acta Scientiarum 36: 225-233. https://doi.org/10.4025/actascihealthsci.v36i2.20187
  2. Amalinei, R.L.M., Trifan, A., Cioanca, O., Miron, S.D., Mihai, C.T., Rotinberg, P., Miron, A. 2014. Polyphenol-rich extract from Pinus sylvestris L. bark chemical and antitumor studies, Revista medicochirugicala a Societii de Medici si Naturalisti din lasi 118(2): 551-557.
  3. Barnes, R.L. 1962. Glutamine synthesis and translocation in pine, Plant Physiology 37: 323-326. https://doi.org/10.1104/pp.37.3.323
  4. Cadiz-Gurerrea, M., Fernandez-Arroyo, S., Segura-Carretero, A. 2015. Pine bark and green tea concentrated extracts: antioxidant activity and comprehensive characterization of bioactive compounds by HPLC-ESI-QTOF-MS, International Journal of Molecular Science 15: 20382-20402. https://doi.org/10.3390/ijms151120382
  5. Diouf, P.N., Stevanovic, T., Cloutier, A. 2009. Antioxidant properties and polyphenol contents of Trembling aspen bark extracts, Wood Science and Technology 43(4): 457-470. https://doi.org/10.1007/s00226-009-0240-y
  6. Eberhardt, T.L. 2012. Impact of industrial source on the chemical composition of Loblolly pine bark, Forest Product Journal 62(7/8): 516-519. https://doi.org/10.13073/FPJ-D-12-00007.1
  7. Fengel, D., Wegener, G. 1989. Wood: Chemistry, Ultrastructure, Reactions; Constituents of Bark. De Gruyter. Pp 240-267, Berlin, Germany.
  8. Hafizoglu, H., Holmborn, B., Reunanen, M. 2002. Chemical composition of lipophilic and phenolic constituents of bark from Pinus nigra, Abies bornmulleriana, and Castanea sativa, Holzforschung 56: 257-260. https://doi.org/10.1515/HF.2002.042
  9. Humphreys, F.R. 1956. Determination of tanninformaldehyde in bark, Social Leader Trade Chemist Journal 40: 147-149.
  10. Karonen, M., Hamalainen, M., Niemnen, R., Klika, K.D., Loponen, J., Ovcharenko, V.V., Moilanen, E., Pihlaja, K. 2004. Phenolic extractives from the bark of Pinus sylvestris L. and their effects on inflammatory meditors Nitric Oxide and Prostaglandin $E_2$, Journal of Agriculture Food and Chemistry 52: 7532-7540. https://doi.org/10.1021/jf048948q
  11. Kofujita, H., Ettyu, K., Ota, M. 1999. Characterization of the major components in bark from five Japanese tree species for chemical utilization, Wood Science and Technology 33: 223-228. https://doi.org/10.1007/s002260050111
  12. Krogell, J., Holmbom, B., Pranovich, A., Hemming, J., Willfor, S. 2012. Extraction and chemical characterization of Norway spruce inner and outer bark, Nordic Pulp and Paper Research Journal 27: 6-17. https://doi.org/10.3183/npprj-2012-27-01-p006-017
  13. Ku, C.S., Jang, J.P., Mun, S.P. 2007. Exploitation of Polyphenol-rich Pine Barks for Antioxidant Activity, Journal of Wood Science 53: 524-528. https://doi.org/10.1007/s10086-007-0896-6
  14. Lee, M.S., Min, J., Si, C.L., Bae, Y.S. 2016. Hydrolysable tannins from Cercidiphyllum japonicum bark, Journal of the Korean Wood Science and Technology 44(4): 559-570. https://doi.org/10.5658/WOOD.2016.44.4.559
  15. Li, Z.J., Chen, S., Yang, X.H., Wang R., Min, H.J., Wu, L., Si, C.L., Bae, Y.S. 2018. Secondary metabolites with anti-complementary activity from the stem barks of Juglans mandshurica Maxim, Journal of the Korean Wood Science and Technology 46(2): 118-124. https://doi.org/10.5658/WOOD.2018.46.2.118
  16. Masendra, Ashitani, T., Takahashi, K., Lukmandaru, G. 2018a. Lipophilic extractives of inner and outer barks from six different Pinus species grown in Indonesia, Journal of Forestry Research 29(5): 1329-1336. https://doi.org/10.1007/s11676-017-0545-x
  17. Masendra, Ashitani, T., Takahashi, K., Lukmandaru, G. 2018b. Triterpenoids and steroids from the bark of Pinus merkusii (Pinaceae), BioResources 13(3): 6160-6170.
  18. Medeiros, P.M., Simoneit B.R.T. 2007. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry, Journal of Chromatography A 1141: 271-278. https://doi.org/10.1016/j.chroma.2006.12.017
  19. Miranda, I., Mirra, I., Gominho, J., Pereira, H. 2017. Fractioning of bark of Pinus pinea by milling and chemical characterization of different fraction, Maderas: Cience y Tecnologia 19(2): 185-194.
  20. Mohareb, A.S.O., Kherallah, I.E.A., Badawy, M.E.I., Salem, M.Z.M., Yousef, H.A. 2017. Chemical composition and activity of bark and leaf extracts of Pinus halepensis and Olea europaea grown in Al-Jabel Al-Akhdar Region, Libya against some plant phytopathogens, Journal of Applied Biotechnology and Bioengineering 3(3): 67-78.
  21. Molyneux, R.J., Gardner, D.R., James, L.F., Colegate, S.M. 2002. Polyhydroxy alkaloids: Chromatographic analysis, Journal of Chromatography A 967: 57-74. https://doi.org/10.1016/S0021-9673(01)01558-8
  22. Morita, S., Yazaki, Y., Johnson, G.C. 2001. Mycelium growth promotion by water extractives from the inner bark of radiata pine (Pinus radiata D. Don), Holzforschung 55: 155-158. https://doi.org/10.1515/HF.2001.025
  23. Mun, S.P. 2014. Efficacy and reusability of commercial adsorbent for isolation of proanthocyanidin from hot water extract of Pinus radiata bark, Journal of the Korean Wood Science and Technology 42(2): 207-213. https://doi.org/10.5658/WOOD.2014.42.2.207
  24. Mun, S.P., Nicholas, D.D. 2017. Effect of proanthocyanidinrich extracts from Pinus radiata bark on termite feeding deterrence, Journal of the Korean Wood Science and Technology 45(6): 720-727. https://doi.org/10.5658/WOOD.2017.45.6.720
  25. Nordin, A., Uggla C., Nasholm, T. 2001. Nitrogen forms in bark, wood and foliage of nitrogen-fertilized Pinus sylvestris, Tree Physiology 21: 59-64. https://doi.org/10.1093/treephys/21.1.59
  26. Nunes, E., Quilho, T., Pereira, H. 1999. Anatomy and chemical composition of P. pinea L. bark, Annals of Forest Science 56: 479-484. https://doi.org/10.1051/forest:19990604
  27. Petersson, G. 1969. Mass spectrometry of alditol as trimethylsilyl derivatives, Tetrahedron 25: 4437-4443. https://doi.org/10.1016/S0040-4020(01)82985-9
  28. Proestos, C,, Komaitis, M. 2013. Analysis of naturally occurring phenolic compounds in aromatic plants by RP-HPLC coupled to diode array detector (DAD) and GC-MS after silylation, Foods 2: 90-99. https://doi.org/10.3390/foods2010090
  29. Richard, T., Broadhurst, B., Willian, J.T. 1978. Analysis of condensed tannins using acidified vanillin, Journal of the Science of Food and Agriculture 29: 788-794. https://doi.org/10.1002/jsfa.2740290908
  30. Rohloff, J. 2015. Analysis of phenolic and cyclic compounds in plant using derivatization techniques in combination with GC-MS-based metabolite profiling, Molecules 20: 3431-3462. https://doi.org/10.3390/molecules20023431
  31. Umezawa, T. 2001. Wood and cellulosic chemistry: Chemistry of extractives. Hon, D.N.,-S., and Shiraishi, N., New York, pp 213-241.
  32. Yesil-Celiktas, O., Ganzera, M., Akgun, I., Sevimli, C., Kormaz, K.S., Bedir, E. 2009. Determination of Polyphenolic Constituents and Biological Activities of Bark Extracts from different Pinus Species, Journal of the Science of Food and Agriculture 89: 1339-1345. https://doi.org/10.1002/jsfa.3591
  33. Zarate, E., Boyle, V., Rupprecht, U., Green, S., Villas-Boas, S.G., Baker, P., Pinu, F.R. 2016. Fully automated trimethylsilyl (TMS) derivatisation protocol for metabolite profiling by GC-MS, Metabolites 1-13.