DOI QR코드

DOI QR Code

Performance analysis of OFDM and CDMA communication methods in underwater acoustic channel

수중 채널 환경에서 OFDM 및 CDMA 통신 방식별 성능 분석

  • 김길용 (호서대학교 해양IT융합기술연구소) ;
  • 김민상 (호서대학교 해양IT융합기술연구소) ;
  • 고학림 (호서대학교 정보통신공학과) ;
  • 임태호 (호서대학교 해양IT융합기술연구소)
  • Received : 2018.10.01
  • Accepted : 2019.01.23
  • Published : 2019.01.31

Abstract

In recent years, researches on various communication methods have been conducted, particularly on OFDM (Orthogonal Frequency Division Multiplexing) and CDMA (Code Division Multiple Access) methods, as the use of underwater communication increases. While OFDM is, in general, advantageous in that it is resistant to Doppler in the water and it enables a high-speed communication, CDMA is resistant to frequency selective fading in the water and it can reduce energy consumption. Therefore, in this paper, we performed experiments in the shallow water in Western Sea of Korea to analyze the performance of OFDM and CDMA communication systems in the underwater channel environment. The maximum delay spread and Doppler spread were drawn by using the data obtained from the real sea area in order to analyze the underwater channel environment characteristics of the shallow water in Western Sea of Korea. The communication performances of OFDM and CDMA are shown as coded BER (Bit Error Rate) according to the variation of the maximum delay spread and the Doppler spread, respectively. The result of the analysis show that the OFDM method has more resistant performances to the underwater channel environment changes than the CDMA method.

최근 수중 통신을 활용하는 사례가 많아짐에 따라 여러 가지 통신 방식에 대한 연구가 진행되고 있으며, 그 중에서 OFDM(Orthogonal Frequency Division Multiplexing) 방식과 CDMA(Code Division Multiple Access) 방식에 대한 연구 사례가 증가하고 있다. 일반적으로 OFDM은 수중에서 도플러에 강하고 고속 통신이 가능하다는 장점이 있으며, CDMA는 수중에서 주파수 선택적 페이딩에 강하고 에너지 소모를 줄일 수 있는 등의 장점이 있다. 따라서 본 논문에서는 수중 채널 환경에서 OFDM과 CDMA 통신 방식의 성능 분석을 위해 서해 천해역에서 실험을 수행하였다. 서해 천해역의 수중 채널 환경 특성을 분석하기 위해 실해역에서 취득한 데이터를 사용하여 최대 지연 확산과 도플러 확산을 도출하였으며, 최대 지연 확산과 도플러 확산의 변화에 따른 OFDM과 CDMA 방식의 통신 성능을 coded BER(Bit Error Rate)로 나타내었다. 분석 결과 OFDM 방식이 CDMA 방식에 비해 수중 채널 환경 변화에 강인한 통신 성능을 보임을 확인하였다.

Keywords

GOHHBH_2019_v38n1_30_f0001.png 이미지

Fig. 1. Block diagram of the OFDM system used in this study.

GOHHBH_2019_v38n1_30_f0002.png 이미지

Fig. 2. Frame structure of OFDM system.

GOHHBH_2019_v38n1_30_f0003.png 이미지

Fig. 3. Block diagram of the CDMA system used in this study.

GOHHBH_2019_v38n1_30_f0004.png 이미지

Fig. 4. Frame structure of CDMA uplink system.

GOHHBH_2019_v38n1_30_f0005.png 이미지

Fig. 5. Experimental location.

GOHHBH_2019_v38n1_30_f0006.png 이미지

Fig. 6. Experimental environment.

GOHHBH_2019_v38n1_30_f0007.png 이미지

Fig. 7. Transmitting transducers (L) and receiving hyd-rophones (R).

GOHHBH_2019_v38n1_30_f0008.png 이미지

Fig. 8. Transceive systems.

GOHHBH_2019_v38n1_30_f0009.png 이미지

Fig. 9. Performance comparison by pilot spacing when frequency repetition is maximum (a) and time repetition (b) is maximum.

GOHHBH_2019_v38n1_30_f0010.png 이미지

Fig. 10. Performance comparison with maximum excess delay spread and doppler spread when time repetition is fixed.

GOHHBH_2019_v38n1_30_f0011.png 이미지

Fig. 11. Performance comparison by pilot spacing with maximum excess delay spread and doppler spread when frequency repetition is fixed.

Table 1. Parameters of OFDM uplink system.

GOHHBH_2019_v38n1_30_t0001.png 이미지

Table 2. Parameters of CDMA uplink system.

GOHHBH_2019_v38n1_30_t0002.png 이미지

Table 3. Spreading code.

GOHHBH_2019_v38n1_30_t0003.png 이미지

References

  1. F. Akyildiz, D. Pompili, and T.Melodia, "Challenges for efficient communication in underwater acoustic sensor networks," ACM SIGBED Rev., 1, 3-8 (2004).
  2. M. Stojanovic and J. Preisig, "Underwater acoustic communication channels: propagation models and statistical characterization," IEEE Communications Magazine, 47, 84-89 (2009). https://doi.org/10.1109/MCOM.2009.4752682
  3. C. Qi and L.Wu, "Sparse channel estimation for wavelet-based underwater acoustic communications," Transactions on Emerging Telecommunications Technologies, 23, 764-776 (2012). https://doi.org/10.1002/ett.2555
  4. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks-research challenges," Ad Hoc Networks, 3, 257-279 (2005). https://doi.org/10.1016/j.adhoc.2005.01.004
  5. M. Chitre, S. Shahabudeen, L. Freitag, and M. Stojanovic, "Recent advances in underwater acoustic communications & networking," IEEE Oceans 2008, 1-10 (2009).
  6. A. Radosevic, R. Ahmed, T. M. Duman, J. G. Proakis, and M. Stojanovic, "Adaptive OFDM modulation for underwater acoustic communications : design considerations and experimental results," IEEE J. Oceanic Engineering, 39, 357-370 (2014). https://doi.org/10.1109/JOE.2013.2253212
  7. S. Mason, C. Berger, S. Zhou, K. Ball, L. Freitag, and P. Willett, "An OFDM design for underwater acoustic channels with doppler spread," 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 138-143 (2009).
  8. P. Kumar, V. K. Trivedi, and P. Kumar, "Recent trends in multicarrier underwater acoustic communications," 2015 IEEE Underwater Technology, 1-8 (2015).
  9. Y. W. Hong, E. K. Hong, J. H. Choi, and H. J. Yu, Fundamentals of Mobile Communications (Life and Power Press, Paju, 2017), pp. 450.
  10. H. Mei, H. Sun, Q. Jie, X. Kuai, and G. Ye, "The clipping and nonlinear distortion compensation for underwater acoustic OFDM system," IEEE Oceans 2014, 1-6 (2014).
  11. M. D. Nisar, H. Nottensteiner, and T. Hindelang, "On performance limits of DFT spread OFDM systems," 16th IST Mobile and Wireless Communications Summit, 1-4 (2007).
  12. H. Sari, G. Karam, and I. Jeanclaude, "Transmission techniques for digital terrestrial tv broadcasting," IEEE Communications Magazine, 33, 100-109 (1995).
  13. S. L. Miller and R. J. O'Dea, "Peak power and bandwidth efficient linear modulation", IEEE Trans on. Communications, 46, 1639-1648 (1998). https://doi.org/10.1109/26.737402
  14. Y. P. Lee, Y. S. Moon, N. Y. Ko, H. T. Choi, L. Huang, and Y. Bae, "DSSS-Based channel access technique DS-CDMA for underwater acoustic transmission," International J. Fuzzy Logic and Intelligent Systems 2015, 15, 53-59 (2015).
  15. V. Kotzsch, W. Rave, and G. Fettweis, "ISI analysis in network MIMO OFDM systems with insufficient cyclic prefix length," 2010 7th International Symposium on Wireless Communication Systems, 189-193 (2010).
  16. Z. Wang and G. Giannakis, "Wireless multicarrier communications" IEEE Signal Processing Magazine, 17, 29-48 (2000). https://doi.org/10.1109/79.841722
  17. S. Ghosh, I. S. Misra, and S. K. Sanyal, "Study of the effect of cyclic prefix on different QoS parameters in WiMax network," International Conference on Communication, Circuits and Systems, 1-3 (2012).
  18. T. S. Lee, T. H. Im, H. B. Lee, H. Ma, and H. L. Ko, "Study on implementation of OFDM system of west coast," Proc. Winter KICS Conference, 1224-1225 (2016)
  19. D. Pompili, T. Melodia, and I. F. Akyildiz, "A CDMAbased medium access control for underwater acoustic sensor networks," IEEE Trans on. Wireless Communications, 8, 1899-1909 (2009). https://doi.org/10.1109/TWC.2009.080195
  20. E. M. Sozer, J. G. Proakis, R. Stojanovic, J. A. Rice, A. Benson, and M. Hatch, "Direct sequence spread spectrum based modem for underwater acoustic communication and channel measurements," IEEE Oceans, 99, 229-233 (1999).
  21. J. Kim, T. H. Bok, J. Bae, D. G. Paeng, C. H. Lee, and S. Kim, "Communication performance analysis according to seasons in West Sea," J. the Institute of Electronics Engineers of Korea, 48, 9-15 (2011).
  22. K. Y. Kim, K. W. Kim, M. S. Kim, T. G. Jeong, and H. L. Ko, "An analysis of underwater acoustic channel environment according to water temperature change in the shallow water of the West Sea," J. KICS, 43, 1191-1196 (2018). https://doi.org/10.7840/kics.2018.43.7.1191
  23. M. Stojanovic, J. G. Proakis, J. A. Rice, and M. D. Green, "Spread spectrum underwater acoustic telemetry," IEEE Oceans, 98, 650-654 (1998).
  24. M. Stojanovic, J. G. Proakis, and J. A. Catipovic, "Performance of a high rate adaptive equalizer on a shallow water acoustic channel," J. Acoust. Soc. Am. 100, 2213-2219 (1996). https://doi.org/10.1121/1.417930