DOI QR코드

DOI QR Code

A Study of the Influence of Short-Term Air-Sea Interaction on Precipitation over the Korean Peninsula Using Atmosphere-Ocean Coupled Model

기상-해양 접합모델을 이용한 단기간 대기-해양 상호작용이 한반도 강수에 미치는 영향 연구

  • Han, Yong-Jae (Department of Earth System Prediction, Korea Environmental Science & Technology Institute) ;
  • Lee, Ho-Jae (Department of Earth System Prediction, Korea Environmental Science & Technology Institute) ;
  • Kim, Jin-Woo (Department of Earth System Prediction, Korea Environmental Science & Technology Institute) ;
  • Koo, Ja-Yong (Department of Earth System Prediction, Korea Environmental Science & Technology Institute) ;
  • Lee, Youn-Gyoun (Department of Earth System Prediction, Korea Environmental Science & Technology Institute)
  • 한용재 (환경과학기술 지구시스템예측부) ;
  • 이호재 (환경과학기술 지구시스템예측부) ;
  • 김진우 (환경과학기술 지구시스템예측부) ;
  • 구자용 (환경과학기술 지구시스템예측부) ;
  • 이윤균 (환경과학기술 지구시스템예측부)
  • Received : 2018.11.22
  • Accepted : 2019.12.13
  • Published : 2019.12.31

Abstract

In this study, the effects of air-sea interactions on precipitation over the Seoul-Gyeonggi region of the Korean Peninsula from 28 to 30 August 2018, were analyzed using a Regional atmosphere-ocean Coupled Model (RCM). In the RCM, a WRF (Weather Research Forecasts) was used as the atmosphere model whereas ROMS (Regional Oceanic Modeling System) was used as the ocean model. In a Regional Single atmosphere Model (RSM), only the WRF model was used. In addition, the sea surface temperature data of ECMWF Reanalysis Interim was used as low boundary data. Compared with the observational data, the RCM considering the effect of air-sea interaction represented that the spatial correlations were 0.6 and 0.84, respectively, for the precipitation and the Yellow Sea surface temperature in the Seoul-Gyeonggi area, which was higher than the RSM. whereas the mean bias error (MBE) was -2.32 and -0.62, respectively, which was lower than the RSM. The air-sea interaction effect, analyzed by equivalent potential temperature, SST, dynamic convergence fields, induced the change of SST in the Yellow Sea. In addition, the changed SST caused the difference in thermal instability and kinematic convergence in the lower atmosphere. The thermal instability and convergence over the Seoul-Gyeonggi region induced upward motion, and consequently, the precipitation in the RCM was similar to the spatial distribution of the observed data compared to the precipitation in the RSM. Although various case studies and climatic analyses are needed to clearly understand the effects of complex air-sea interaction, this study results provide evidence for the importance of the air-sea interaction in predicting precipitation in the Seoul-Gyeonggi region.

본 연구에서는 지역 기상-해양 접합모델을 이용하여 2018년 8월 28일부터 30일까지 한반도 서울-경기지역에 내린 강수에 대해 대기-해양 상호작용의 효과를 분석하였다. 지역 기상-해양 접합모델에서 기상모델은 WRF (Weather Research Forecasts)가 사용되었으며, 해양모델은 ROMS (Regional Oceanic Modeling System)가 사용되었다. 단일 기상 모델은 WRF모델만 이용되었으며, ECMWF Re-Analysis Interim 의 해수면온도자료가 바닥경계자료로 사용되었다. 관측자료와 비교하여, 대기-해양 상호작용의 효과가 고려된 접합모델은 서울-경기지역의 강수 및 황해 해수면온도에 대해 공간상관계수가 각각 0.6과 0.84로 이는 지역 기상모델보다 높게 나타났다. 또한, 평균편향오차(MBE, Mean Bias Error)은 각각 -2.32와 -0.62로 지역 기상모델 보다 낮은 오차율을 보였다. 상당온위와 해수면온도 및 역학적 수렴장으로 분석한 대기-해양 상호작용의 효과는 황해 해수면온도의 변화를 유도하였고, 그 변화는 하층대기에서 열적 불안정과 운동학적 수렴대의 차이를 발생시켰다. 열적 불안정과 수렴대는 결과적으로 서울-경기 지역에서 상승운동을 유도하였고, 결과적으로 기상-해양 접합모델에서 모의된 강수가 관측과 더 유사한 공간분포를 나타냈다. 그러나 복잡한 관계에 있는 대기-해양 상호작용의 효과를 더 명확히 파악하기 위해서는 다양한 사례연구와 장기적인 분석이 필요하지만, 본 연구는 기상-해양 상호작용이 강수 예보에 중요성에 대한 또 다른 증거를 제시한다.

Keywords

References

  1. Bleck, R., 2002, An ocean general circulation model framed in hybrid isopycnic-cartesian coordinates, Ocean Modelling, 4, p 55-88. https://doi.org/10.1016/S1463-5003(01)00012-9
  2. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Berg, L. van de, Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., Vitart, F., 2011, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Royal Meteorological Society, Volume 137, Issue 656, 553-597 p. https://doi.org/10.1002/qj.828
  3. Hong, S.Y., Lim, K.S., Lee, Y.H., Ha, J.C., Kim, H.W., Ham, S.J., Dudhia, J., 2010, Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection, Advances in Meteorology Volume 2010, Article ID 707253, 10 p.
  4. Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., 2007, The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, Journal of Hydrometeorology, Volume 8, https://doi.org/10.1175/JHM560.1.
  5. Jet Propulsion Laboratory Multi-scale Ultra-high Resolution Measures Project, 2010, GHRSST level 4 MUR global foundation sea surface temperature analysis, Ver. 2, PO.DAAC, Pasadena, California, USA.
  6. Jensen, T.G., Shulman, I., Wijesekera, H.W., Anderson, S., Ladner, S., 2018, Submesoscale features and their interaction with fronts and internal tides in a highresolution coupled atmosphere-ocean-wave model of the Bay of Bengal, Ocean Dynamics (2018), 68: 391-410 p. https://doi.org/10.1007/s10236-018-1136-x
  7. Jiang, X., B. Xiang, M. Zhao, T. Li, S. Lin, Z. Wang, and J. Chen, 2018, Intraseasonal tropical cyclogenesis prediction in a global coupled model system, Journal of climate, Doi:10.1175/JCLI-D-17-0454.1.
  8. Kain, J.S., 2004, The Kain-Fritsch convective parameterization: An update, Journal of Applied Meteorology, Volume 43, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
  9. Kim, J.Y. and Kim, D.Y. 2017, Numerical simulations of summer precipitation in Seoul metropolitan area, Korea Society for Environmental Technology, 18(4), 354-363.
  10. Koo, J.Y., Lee, I.W., Han, Y.J., Lee, H.J., 2019, Flexible coupling device and flexible coupling methods between earth system forecast models, Korea Patent No: 10-1977670, Seoul: Korea Intellectual Property Office.
  11. Lee, J.H, Jang, S.H., Kim, S.D., Evaluation of the WRF in reproducing the spatio-temporal pattern of a heavy rainfall event, J. Korean Soc. Hazard Mitig., 15(5):255-265 https://doi.org/10.9798/KOSHAM.2015.15.5.255
  12. Ministry of the Interior and Safety(MOIS), 2017, 2017 Disaster Yearbook, 56 p.
  13. Min, J.S., Jee, J.B., Jang, M., Park, J.G., 2017, A study on improvement of high resolution regional NWP by applying ocean mixed layer model, Atmosphere vol. 27, No. 3, 317-329 p. https://doi.org/10.14191/Atmos.2017.27.3.317
  14. Moon, Y.I., Kwon, H.H., Kim, D.K., 2005, A study of relationships between the sea surface temperatures and rainfall in Korea. Journal of Korea Water resources Association, DOI: 10.3741/JKWRA.2005.38.12.995.
  15. Shchepetkin, A. F., McWilliams, J.C., 2005, The regional oceanic modeling system (ROMS): a split-explicit, freesurface, topography-following-coordinate oceanic model, Ocean Modelling, Volume 9, Issue 4, 347-404 p. https://doi.org/10.1016/j.ocemod.2004.08.002
  16. Skamarock, W.C., Klemp, J.B., 2008, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, Journal of Computational Physics, Volum 227, Issue 7, 3465-3485 p. https://doi.org/10.1016/j.jcp.2007.01.037
  17. Xin, W., Xiaohui, L., Yongjia, S., Guohua, F., 2018, Fully coupled high-resolution atmospheric-hydrological modeling: Development, application and analysis of WRF-VIC, 20th EGU General Assembly, EGU2018, Proceedings from the conference held 4-13 April, 2018 in Vienna, Austria, 2445 p.