DOI QR코드

DOI QR Code

Comparison of Multi-Satellite Sea Surface Temperatures and In-situ Temperatures from Ieodo Ocean Research Station

이어도 해양과학기지 관측 수온과 위성 해수면온도 합성장 자료와의 비교

  • Woo, Hye-Jin (Department of Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University) ;
  • Choi, Do-Young (Department of Science Education, Seoul National University) ;
  • Byun, Do-Seung (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Jeong, Kwang-Yeong (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Lee, Eun-Il (Ocean Research Division, Korea Hydrographic and Oceanographic Administration)
  • 우혜진 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과/해양연구소) ;
  • 최도영 (서울대학교 과학교육과) ;
  • 변도성 (국립해양조사원 해양과학조사연구실) ;
  • 정광영 (국립해양조사원 해양과학조사연구실) ;
  • 이은일 (국립해양조사원 해양과학조사연구실)
  • Received : 2019.12.03
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

Over the past decades, daily sea surface temperature (SST) composite data have been produced using periodically and extensively observed satellite SST data, and have been used for a variety of purposes, including climate change monitoring and oceanic and atmospheric forecasting. In this study, we evaluated the accuracy and analyzed the error characteristic of the SST composite data in the sea around the Korean Peninsula for optimal utilization in the regional seas. We evaluated the four types of multi-satellite SST composite data including OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) SST, and MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature) collected from January 2016 to December 2016 by using in-situ temperature data measured from the Ieodo Ocean Research Station (IORS). Each SST composite data showed biases of the minimum of 0.12℃ (OISST) and the maximum of 0.55℃ (MURSST) and root mean square errors (RMSE) of the minimum of 0.77℃ (CMC SST) and the maximum of 0.96℃ (MURSST) for the in-situ temperature measurements from the IORS. Inter-comparison between the SST composite fields exhibited biases of -0.38-0.38℃ and RMSE of 0.55-0.82℃. The OSTIA and CMC SST data showed the smallest error while the OISST and MURSST data showed the most obvious error. The results of comparing time series by extracting the SST data at the closest point to the IORS showed that there was an apparent seasonal variation not only in the in-situ temperature from the IORS but also in all the SST composite data. In spring, however, SST composite data tended to be overestimated compared to the in-situ temperature observed from the IORS.

지난 수십년 동안 인공위성을 통해 광범위하고 주기적으로 관측된 해수면온도 자료를 사용하여 일별 해수면온도 합성장이 생산되고 있으며 기후변화 감시와 해양 대기 예측 등 다양한 목적으로 활용되어 왔다. 본 연구에서는 지역적인 해역에서 최적화된 활용을 위해 한반도 주변해역에서 해수면온도 합성장 자료의 정확도 평가와 오차 특성 분석을 수행하였다. 2016년 1월부터 12월까지 이어도 해양과학기지 관측 수온 자료를 활용하여 4종의 다중 인공위성 기반 해수면온도 합성장 자료(OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) 해수면온도 및 MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature))를 비교하여 각 해수면온도 합성장의 정확도를 평가하였다. 이어도 해양과학기지 수온 자료에 대하여 각 해수면온도 합성장은 최소 0.12℃ (OISST)와 최대 0.55℃ (MURSST)의 편차와 최소 0.77℃ (CMC 해수면온도)와 최대 0.96℃ (MURSST)의 평균 제곱근 오차를 나타냈다. 해수면온도 합성장 사이의 상호 비교 결과에서는 -0.38-0.38℃의 편차와 0.55-0.82℃의 평균 제곱근 오차의 범위를 보였으며 OSTIA와 CMC 해수면온도 자료가 가장 작은 오차 특성을 보인 반면 OISST와 MURSST 자료는 가장 큰 오차 특성을 나타내었다. 이어도 해양과학기지와 가장 가까운 지점에서 해수면온도 합성장 자료를 추출하여 시계열을 비교한 결과에서는 이어도 해양과학기지 관측 수온 뿐만 아니라 모든 해수면온도 합성장 자료에서 뚜렷한 계절 변동을 보였으나 봄철 해수면온도 합성장은 이어도 해양과학기지 관측 수온에 비해 과대추정되는 경향이 나타났다.

Keywords

References

  1. Brasnett, B., 2008, The impact of satellite retrievals in a global sea surface temperature analysis. Quarterly Journal of the Royal Meteorological Society, 134(636), 1745-1760. https://doi.org/10.1002/qj.319
  2. Castro, S.L., Wick, G.A., and Steele, M., 2016, Validation of satellite sea surface temperature analyses in the Beaufort Sea using UpTempO buoys. Remote Sensing of Environment, 187, 458-475. https://doi.org/10.1016/j.rse.2016.10.035
  3. Chin, T.M., Vazquez-Cuervo, J., and Armstrong, E.M., 2017, A multi-scale high-resolution analysis of global sea surface temperature. Remote sensing of environment, 200, 154-169. https://doi.org/10.1016/j.rse.2017.07.029
  4. Choi, D.-Y., Woo, H.-J., Park, K.-A., Byun, D.-S., and Lee, E., 2018, Validation of Sea Surface Wind Speeds from Satellite Altimeters and Relation to Sea State Bias -Focus on Wind Measurements at Ieodo, Marado, Oeyeondo Stations. Journal of the Korean earth science society, 39(2), 139-153. (in Korean with English abstract) https://doi.org/10.5467/JKESS.2018.39.2.139
  5. Clancy, R.M., Kaitala, J.E., and Zambresky, L.F., 1986, The Fleet numerical oceanography center global spectral ocean wave model, Bulletin of the American Meteorological Society, 67(5), 498-512. https://doi.org/10.1175/1520-0477(1986)067<0498:TFNOCG>2.0.CO;2
  6. Dash, P., Ignatov, A., Martin, M., Donlon, C., Brasnett, B., Reynolds, R.W., Banzon, V., Beggs, H., Cayula J.-F., Chao, Y., Grumbine, R., Maturi, E., Harris, A., Mittaz, J., Sapper, J., Chin, T.M., Vazquez-Cuervo, J., Armstrong, E.M., Gentemann, C., Cummings, J., Piolle, J.-F., Autret, E., Roberts-Jones, J., Ishizaki, S., Hoyer, J.L., and Poulter, D., 2012, Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons-Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM). Deep Sea Research Part II: Topical Studies in Oceanography, 77, 31-43. https://doi.org/10.1016/j.dsr2.2012.04.002
  7. Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W., 2012, The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sensing of Environment, 116, 140-158. https://doi.org/10.1016/j.rse.2010.10.017
  8. Evans, D., Conrad, C.L., and Paul, F.M., 2003, Handbook of automated data quality control checks and procedures of the National Data Buoy Center. NOAA National Data Buoy Center Tech. Document, 03-02.
  9. Fiedler, E.K., McLaren, A., Banzon, V., Brasnett, B., Ishizaki, S., Kennedy, J., Rayner, N., Roberts-Jones, J., Corlett, G., Merchant, C.J., and Donlon, C., 2019, Intercomparison of long-term sea surface temperature analyses using the GHRSST Multi-Product Ensemble (GMPE) system. Remote sensing of environment, 222, 18-33. https://doi.org/10.1016/j.rse.2018.12.015
  10. Gentemann, C.L., Fewings, M.R., and Garcia-Reyes, M., 2017, Satellite sea surface temperatures along the West Coast of the United States during the 2014-2016 northeast Pacific marine heat wave. Geophysical Research Letters, 44(1), 312-319. https://doi.org/10.1002/2016GL071039
  11. Intergovernmental Oceanographic Commission, 1990, GTSPP real-time quality control manual. IOC Manual and Guides 22.
  12. Intergovernmental Oceanographic Commission, 1993, Manual of quality control procedures for validation of oceanographic data. IOC Manual and Guides 26.
  13. Janssen, P.A.E.M., Komen, G.J., and Voogt, W.J.P., 1984, An operational coupled hybrid wave prediction model, Journal of Geophysical Research, 89, 3635-3654. https://doi.org/10.1029/JC089iC03p03635
  14. Kim, G.I., Kug, J.S., Byun, D.S., and Lee, J., 2019, Impacts of SST Pattern Represented by Ocean Temperature near Ieodo Ocean Research Station on Winter Climate Variation over the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 1-10.
  15. Kramar, M.; Ignatov, A., Petrenko, B., Kihai, Y., and Dash, P., 2016, Near Real Time SST Retrievals from Himawari-8 at NOAA Using ACSPO System. In Arnone, R.A., Hou, W.W., (ed), Proceedings of the Ocean Sensing and Monitoring VIII. SPIE: Baltimore, MD, USA, 98270L.
  16. Lee, E.-Y. and Park, K.-A., 2019, Change in the Recent Warming Trend of Sea Surface Temperature in the East Sea (Sea of Japan) over Decades (1982-2018). Remote Sensing, 11(22), 2613. https://doi.org/10.3390/rs11222613
  17. Merchant, C.J., Le Borgne, P., Marsouin, A., and Roquet, H., 2008, Optimal estimation of sea surface temperature from split-window observations. Remote Sensing of Environment, 112(5), 2469-2484. https://doi.org/10.1016/j.rse.2007.11.011
  18. Minnett, P.J., Alvera-Azcarate, A., Chin, T. M., Corlett, G.K., Gentemann, C.L., Karagali, I., Li, X., Marsouin, A., Marullo, S., Maturi, E., Santoleri, R., Saux Picart, S., Steele, M., and Vazquez-Cuervo, J., 2019, Half a century of satellite remote sensing of sea-surface temperature. Remote Sensing of Environment, 233, 111366. https://doi.org/10.1016/j.rse.2019.111366
  19. Moon, I.J., Shim, J.S., Lee, D.Y., Lee, J.H., Min I.K., and Lim K.C., 2010, Typhoon researches using the Ieodo Ocean Research Station: Part I. importance and present status of typhoon observation. Atmos., 20(3), 247-260. (in Korean with English abstract)
  20. Oh, K.H., Park, Y.G., Lim, D.I., Jung H.S., and Shim, J.S., 2006, Characteristics of temperature and salinity observed at the Ioedo Ocean Research Station. J. Korea Soc. Mar. Environ. Eng., 9(4), 225-234. (in Korean with English abstract)
  21. Petrenko, B., Ignatov, A., Kihai, Y., Stroup, J., and Dash, P., 2014, Evaluation and selection of SST regression algorithms for JPSS VIIRS. Journal of Geophysical Research: Atmospheres, 119(8), 4580-4599. https://doi.org/10.1002/2013JD020637
  22. Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., and Schlax, M.G., 2007, Daily highresolution-blended analyses for sea surface temperature. Journal of Climate, 20(22), 5473-5496. https://doi.org/10.1175/2007JCLI1824.1
  23. Reynolds, R.W. and Chelton, D.B., 2010, Comparisons of daily sea surface temperature analyses for 2007-08. Journal of Climate, 23(13), 3545-3562. https://doi.org/10.1175/2010JCLI3294.1
  24. Woo, H.-J., Park, K.-A., Byun, D.-S., Lee, J., and Lee, E., 2017, Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004-2016). The Sea, 23(1), 1-19. (in Korean with English abstract) https://doi.org/10.7850/jkso.2018.23.1.001