DOI QR코드

DOI QR Code

Study on Phenolic Compounds in Lettuce Samples Cultivated from Korea Using UPLC-DAD-QToF/MS

국내 재배 상추로부터 UPLC-DAD-QToF/MS를 이용한 페놀화합물 성분 비교 연구

  • 김헌웅 (국립농업과학원 농식품자원부) ;
  • 이선혜 (국립농업과학원 농식품자원부) ;
  • ;
  • 이민기 (국립농업과학원 농식품자원부) ;
  • 이수지 (국립농업과학원 농식품자원부) ;
  • 박진주 (국립농업과학원 농식품자원부) ;
  • 최용민 (국립농업과학원 농식품자원부) ;
  • 이상훈 (국립농업과학원 농식품자원부)
  • Received : 2019.11.13
  • Accepted : 2019.12.12
  • Published : 2019.12.31

Abstract

The chemical informs about 70 individual phenolic compounds were constructed from various lettuce samples based on literature sources and analytical data. A total of 30 phenolic compounds including quercetin 3-O-glucuronide, quercetin 3-O-(6''-O- malonyl) glucoside, cyanidin 3-O-(6''-O-malonyl)glucoside, chlorogenic acid and chicoric acid as major components were identified in 6 lettuce samples from Korea using UPLC-DAD-QToF/MS on the basis of constructed library. Among these, quercetin 3,7-di-O-glucoside(m/z 627 [M+H]+), quercetin 3-O-(2''-O-malonyl)glucoside(morkotin C, m/z 551 [M+H]+), quercetin 3-O-(6''- O-malonyl)glucoside methyl ester(m/z 565 [M+H]+), 5-O-cis-p-coumaroylquinic acid(m/z 339 [M+H]+) and 5-O-caffeoylquinic acid methyl ester(m/z 369 [M+H]+) were newly confirmed from the lettuce samples. In total content of phenolic compounds, 4 red lettuce samples(2,947.7~7,535.6 mg/100 g, dry weight) showed higher than green lettuce(2,687.3 mg) and head lettuce(320.1 mg).

Keywords

References

  1. Abu-Reidah IM, Contreras MM, Arraez-Roman D, Segura- Carretero A, Fernandez-Gutierrez A. 2013. Reversed-phase ultra-highperformance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J Chromatogr A 1313:212-227 https://doi.org/10.1016/j.chroma.2013.07.020
  2. Adesso S, Pepe G, Sommella E, Manfra M, Scopa A, Sofo A, Tenore GC, Russo M, Gaudio FD, Autore G, Campiglia P, Marzocco S. 2016. Anti-inflammatory and antioxidant activity of polyphenolic extracts from Lactuca sativa (var. Maravilla de Verano) under different farming methods. J Sci Food Agric 96:4194-4206 https://doi.org/10.1002/jsfa.7622
  3. Assefa AD, Choi S, Lee JE, Sung JS, Hur OS, Ro NY, Lee HS, Jang SW, Rhee JH. 2019. Identification and quantification of selected metabolites in differently pigmented leaves of lettuce (Lactuca sativa L.) cultivars harvested at mature and bolting stages. BMC Chem 13:56 https://doi.org/10.1186/s13065-019-0570-2
  4. Becker C, Klaering HP, Kroh LW, Krumbein A. 2014. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6''-O-malonyl)-glucoside and caffeoylmalic acid. Food Chem 146:404-411 https://doi.org/10.1016/j.foodchem.2013.09.061
  5. Becker C, Klaring HP, Kroh LW, Krumbein A. 2013. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce. Plant Physiol Biochem 72:154-160 https://doi.org/10.1016/j.plaphy.2013.05.006
  6. Becker C, Klaring HP. 2016. $CO_2$ enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chem 199:736-745 https://doi.org/10.1016/j.foodchem.2015.12.059
  7. Caldwell CR. 2003. Alkylperoxyl radical scavenging activity of red leaf lettuce (Lactuca sativa L.) phenolics. J Agric Food Chem 51:4589-4595 https://doi.org/10.1021/jf030005q
  8. Cheng DM, Pogrebnyak N, Kuhn P, Poulev A, Waterman C, Rojas-Silva P, Johnson WD, Raskin I. 2014. Polyphenolrich Rutgers Scarlet lettuce improves glucose metabolism and liver lipid accumulation in diet-induced obese C57BL/6 mice. Nutrition 30:S52-S58
  9. Damerum A, Selmes SL, Biggi GF, Clarkson GJ, Rothwell SD, Truco MJ, Michelmore RW, Hancock RD, Shellcock C, Chapman MA, Taylor G. 2015. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa). Hortic Res 2:15055 https://doi.org/10.1038/hortres.2015.55
  10. Dannehl D, Becker C, Suhl J, Josuttis M, Schmidt U. 2016. Reuse of organomineral substrate waste from hydroponic systems as fertilizer in open-field production increases yields, flavonoid glycosides, and caffeic acid derivatives of red oak leaf lettuce (Lactuca sativa L.) much more than synthetic fertilizer. J Agric Food Chem 64:7068-7075 https://doi.org/10.1021/acs.jafc.6b02328
  11. DuPont MS, Mondin Z, Williamson G, Price KR. 2000. Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce and endive. J Agric Food Chem 48:3957-3964 https://doi.org/10.1021/jf0002387
  12. Ferreres F, Gil MI, Castaner M, Tomas-Barberan FA. 1997. Phenolic metabolites in red pigmented lettuce (Lactuca sativa). Changes with minimal processing and cold storage. J Agric Food Chem 45:4249-4254 https://doi.org/10.1021/jf970399j
  13. Garcia CJ, Gil MI, Tomas-Barberan FA. 2019. Targeted metabolomics analysis and identification of biomarkers for predicting browning of fresh-cut lettuce. J Agric Food Chem 67:5908-5917 https://doi.org/10.1021/acs.jafc.9b01539
  14. Hohl U, Neubert B, Pforte H, Schonhof I, Bohm H. 2001. Flavonoid concentrations in the inner leaves of head lettuce genotypes. Eur Food Res Technol 213:205-211 https://doi.org/10.1007/s002170100361
  15. Hwang-Bo J, Jang KO, Chung H, Park JH, Lee TH, Kim J, Chung IS. 2016. Anti-inflammatory effect of Lactuca sativa L. extract in human umbilical vein endothelial cells and improvement of lipid levels in mice fed a high-fat diet. Korean J Food Nutr 29:998-1007 https://doi.org/10.9799/ksfan.2016.29.6.998
  16. Jeong SW, Kim GS, Lee WS, Kim YH, Kang NJ, Jin JS, Lee GM, Kim ST, Abd El-Aty AM, Shim JH, Shin SC. 2015. The effects of different night-time temperatures and cultivation durations on the polyphenolic contents of lettuce: Application of principal component analysis. J Adv Res 6:493-499 https://doi.org/10.1016/j.jare.2015.01.004
  17. Jin Q, Lee C, Lee JW, Lee IS, Lee MK, Jeon WK, Hwang BY. 2012. Chemical constituents from the fruits of Prunus mume. Nat Prod Sci 18:200-203
  18. Ju WT, Kwon OC, Kim HB, Sung GB, Kim HW, Kim YS. 2018. Qualitative and quantitative analysis of flavonoids from 12 species of Korean mulberry leaves. J Food Sci Technol 55:1789-1796 https://doi.org/10.1007/s13197-018-3093-2
  19. Kim HW, Kim JB, Cho SM, Chung MN, Lee YM, Chu SM, Che JH, Kim SN, Kim SY, Cho YS, Kim JH, Park HJ, Lee DJ. 2012. Anthocyanin changes in the Korean purplefleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem 130:966-972 https://doi.org/10.1016/j.foodchem.2011.08.031
  20. Kim HW, Lee MK, Lee SH, Kim YJ, Asamenew G, Yoon B, Yoo SM, Kim JB. 2018. Comparison of flavonoid glycosides from Korean and French wines using UPLC- DADQToF/MS. J Korean Soc Food Sci Nutr 47:795-803 https://doi.org/10.3746/jkfn.2018.47.8.795
  21. Kim JB. Kim HW, Lee MK, Lee SH, Asamenew G, Lee S, Kim YJ, Lee SH, Choi Y, Park JJ, Yoo SM, Han GJ. 2018. RDA DB 2.0: Phenolic Acids. National Institute of Agricultural Sciences
  22. Kim JB. Kim HW, Lee MK, Lee SH, Kim YJ, Choi BK, Cho SY, Kim HJ, Lee SH, Jang HH, Hwang YJ, Choe JS. 2016. Flavonoids Data Base 1.0. National Institute of Agricultural Sciences
  23. Kim MJ, Moon Y, Tou JC, Mou B, Waterland NL. 2016. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J Food Compos Anal 49:19-34 https://doi.org/10.1016/j.jfca.2016.03.004
  24. Kisiel W. 1998. Flavonoids from Lactuca quercina and L. tatarica. 1998. Acta Soc Bot Pol 67:247-248 https://doi.org/10.5586/asbp.1998.030
  25. Lee JH, Felipe P, Yang YH, Kim MY, Kwon OY, Sok DE, Kim HC, Kim MR. 2009. Effects of dietary supplementation with red-pigmented leafy lettuce (Lactuca sativa) on lipid profiles and antioxidant status in C57BL/6J mice fed a high-fat high-cholesterol diet. Br J Nutr 101:1246-1254 https://doi.org/10.1017/S0007114508073650
  26. Li Z, Zhao X, Sandhu AK, Gu L. 2010. Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces. J Agric Food Chem 58:6503-6509 https://doi.org/10.1021/jf1006962
  27. Lin LZ, Harnly J, Zhang RW, Fan XE, Chen HJ. 2012. Quantitation of the hydroxycinnamic acid derivatives and the glycosides of flavonols and flavones by UV absorbance after identification by LC-MS. J Agric Food Chem 60:544-553 https://doi.org/10.1021/jf204612t
  28. Llorach R, Martinez-Sanchez A, Tomas-Barberan FA, Gil MI, Ferreres F. 2008. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem 108:1028-1038 https://doi.org/10.1016/j.foodchem.2007.11.032
  29. Luna MC, Tudela JA, Tomas-Barberan FA, Gil MI. 2016. Modified atmosphere (MA) prevents browning of fresh-cut romaine lettuce through multi-target effects related to phenolic metabolism. Postharvest Biol Technol 119:84-93 https://doi.org/10.1016/j.postharvbio.2016.05.001
  30. Mai F, Glomb MA. 2013. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning. J Agric Food Chem 61:2868-2874 https://doi.org/10.1021/jf305182u
  31. Marin A, Ferreres F, Barbera GG, Gil MI. 2015. Weather variability influences color and phenolic content of pigmented baby leaf lettuces throughout the season. J Agric Food Chem 63:1673-1681 https://doi.org/10.1021/acs.jafc.5b00120
  32. Martini S, Conte A, Tagliazucchi D. 2019. Bioactivity and cell metabolism of in vitro digested sweet cherry (Prunus avium) phenolic compounds. Int J Food Sci Nutr 70:335-348 https://doi.org/10.1080/09637486.2018.1513996
  33. Materska M, Olszowka K, Chilczuk B, Stochmal A, Peclo L, Pacholczyk-Sienicka B, Piacente S, Pizza C, Masullo M. 2019. Polyphenolic profiles in lettuce (Lactuca sativa L.) after $CaCl_2$ treatment and cold storage. Eur Food Res Technol 245:733-744 https://doi.org/10.1007/s00217-018-3195-0
  34. Michalska K, Kisiel W, Stojakowska A. 2015. Chemical constituents of Lactuca dregeana. Biochem Syst Ecol 59:302-304 https://doi.org/10.1016/j.bse.2015.02.016
  35. Moreno-Escamilla JO, Alvarez-Parrilla E, de la Rosa LA, Nunez-Gastelum JA, Gonzalez-Aguilar GA, Rodrigo-Garcia J. 2017. Effect of different elicitors and preharvest day application on the content of phytochemicals and antioxidant activity of butterhead lettuce (Lactuca sativa var. capitata) produced under hydroponic conditions. J Agric Food Chem 65:5244-5254 https://doi.org/10.1021/acs.jafc.7b01702
  36. Mulabagal V, Ngouajio M, Nair A, Zhang Y, Gottumukkala AL, Nair MG. 2010. In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem 118:300-306 https://doi.org/10.1016/j.foodchem.2009.04.119
  37. Pepe G, Sommella E, Manfra M, De Nisco M, Tenore GC, Scopa A, Sofo A, Marzocco S, Adesso S, Novellino T, Campiglia P. 2015. Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano). Food Chem 167:153-161 https://doi.org/10.1016/j.foodchem.2014.06.105
  38. Pernice R, Scuderi D, Napolitano A, Fogliano V, Leonardi C. 2007. Polyphenol composition and qualitative characteristics of fresh-cut lettuce in relation to cultivar, mulching, and storage. J Hortic Sci Biotech 82:420-427 https://doi.org/10.1080/14620316.2007.11512253
  39. Qin XX, Zhang MY, Han YY, Hao JH, Liu CJ, Fan SX. 2018. Beneficial phytochemicals with anti-tumor potential revealed through metabolic profiling of new red pigmented lettuces (Lactuca sativa L.). Int J Mol Sci 19:1165 https://doi.org/10.3390/ijms19041165
  40. Ribas-Agusti A, Gratacos-Cubarsi M, Sarraga C, Garcia-Regueiro JA, Castellari M. 2011. Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection. Phytochem Anal 22:555-563 https://doi.org/10.1002/pca.1318
  41. Romani A, Pinelli P, Galardi C, Sani G, Cimato A, Heimler D. 2002. Polyphenols in greenhouse and open-air-grown lettuce. Food Chem 79:337-342 https://doi.org/10.1016/S0308-8146(02)00170-X
  42. Ryu BH. 1999. Antioxidative effects of flavonoids toward modification of human low density lipoprotein. Korean J Food Nutr 12:320-327
  43. Shahidi F, Ambigaipalan P. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects: A review. J Funct Foods 18:820-897 https://doi.org/10.1016/j.jff.2015.06.018
  44. Sobolev AP, Brosio E, Gianferri R, Segre AL. 2005. Metabolic profile of lettuce leaves by high-field NMR spectra. Magn Reson Chem 43:625-638 https://doi.org/10.1002/mrc.1618
  45. Sofo A, Lundegardh B, Martensson A, Manfra M, Pepe G, Sommella E, De Nisco M, Tenore GC, Campiglia P, Scopa A. 2016. Different agronomic and fertilization systems affect polyphenolic profile, antioxidant capacity and mineral composition of lettuce. Sci Hortic 204:106-115 https://doi.org/10.1016/j.scienta.2016.04.003
  46. Stojakowska A, Malarz J, Szewczyk A, Kisiel W. 2012. Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol Plant 34:291-298 https://doi.org/10.1007/s11738-011-0827-4
  47. Su W, Tao R, Liu W, Yu C, Yue Z, He S, Lavelle D, Zhang W, Zhang L, An G, Zhang Y, Hu Q, Larkin RM, Michelmore RW, Kuang H, Chen J. 2019. Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. Plant Biotechnol J 1-12 https://doi.org/10.1111/j.1467-7652.2004.00058.x
  48. Tamura H, Akioka T, Ueno K, Chujyo T, Okazaki KI, King PJ, Robinson WE. 2006. Anti-human immunodeficiency virus activity of 3,4,5-tricaffeoylquinic acid in cultured cells of lettuce leaves. Mol Nutr Food Res 50:396-400 https://doi.org/10.1002/mnfr.200500216
  49. Thabti I, Elfalleh W, Hannachi H, Ferchichi A, Campos MG. 2012. Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLCDAD and HPLC-MS. J Funct Foods 4:367-374 https://doi.org/10.1016/j.jff.2012.01.006
  50. Viacava GE, Roura SI, Berrueta LA, Iriondo C, Gallo B, Alonso-Salces RM. 2017. Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QToF/MS using MSE scan mode. J Mass Spectrom 52:873-902 https://doi.org/10.1002/jms.4021
  51. Viacava GE, Roura SI, Lopez-Marquez DM, Berrueta LA, Gallo B, Alonso-Salces RM. 2018. Polyphenolic profile of butterhead lettuce cultivar by ultrahigh performance liquid chromatography coupled online to UV-visible spectrophotometry and quadrupole time-of-flight mass spectrometry. Food Chem 260:239-273 https://doi.org/10.1016/j.foodchem.2018.03.151
  52. Wang Z, Lin L, Harnly JM, Harrington PdB, Chen P. 2014. Computer-aided method for identification of major flavone/flavonol glycosides by high-performance liquid chromatographydiode array detection-tandem mass spectrometry (HPLC-DADMS/MS). Anal Bioanal Chem 406:7695-7704 https://doi.org/10.1007/s00216-014-8187-8
  53. Wu X, Prior R. 2005. Identification and characterization of anthocyanins by high-performance liquid chromatographyelectrospray ionization-tandem mass spectrometry in common foods in the United States: Vegetables, nuts, and grains. J Agric Food Chem 53:3101-3113 https://doi.org/10.1021/jf0478861
  54. Xu F, Zou GA, Liu YQ, Aisa HA. 2012. Chemical constituents from seeds of Lactuca sativa. Chem Nat Compound 48:574-576 https://doi.org/10.1007/s10600-012-0314-1
  55. Yang X, Cui X, Zhao L, Guo D, Feng L, Wei S, Zhao C, Huang D. 2017. Exogenous glycine nitrogen enhances accumulation of glycosylated flavonoids and antioxidant activity in lettuce (Lactuca sativa L.). Front Plant Sci 8:2098 https://doi.org/10.3389/fpls.2017.02098
  56. Zhou W, Chen Y, Xu H, Liang X, Hu Y, Jin C, Lu L, Lin X. 2018. Short-term nitrate limitation prior to harvest improves phenolic compound accumulation in hydroponic-cultivated lettuce (Lactuca sativa L.) without reducing shoot fresh weight. J Agric Food Chem 66:10353-10361 https://doi.org/10.1021/acs.jafc.8b02157