DOI QR코드

DOI QR Code

Analysis of Real Ship Operation Data using a Smart Ship Platform

스마트선박 플랫폼을 활용한 실운항 데이터 분석 연구

  • Kang, Jin-Hui (Ship and Offshore Performance Research Center, Samsung Heavy Industries) ;
  • Lee, Hyun-Ho (Ship and Offshore Performance Research Center, Samsung Heavy Industries) ;
  • Lee, Won-Ju (Division of Marine Engineering, Korea Maritime and Ocean University) ;
  • Lee, In-Ho (Ship and Offshore Performance Research Center, Samsung Heavy Industries) ;
  • Kim, Jae-Woo (Ship and Offshore Performance Research Center, Samsung Heavy Industries) ;
  • Park, Cheong-Hee (Dept. of Computer Science and Engineering, Chungnam National University)
  • 강진희 (삼성중공업 선박해양연구센터) ;
  • 이현호 (삼성중공업 선박해양연구센터) ;
  • 이원주 (한국해양대학교 기관공학부) ;
  • 이인호 (삼성중공업 선박해양연구센터) ;
  • 김재우 (삼성중공업 선박해양연구센터) ;
  • 박정희 (충남대학교 컴퓨터공학과)
  • Received : 2019.09.26
  • Accepted : 2019.10.28
  • Published : 2019.10.31

Abstract

An essential part of the development of an autonomous ship is supporting technology that can effectively check and diagnose the operational status of the ship form the shore control center on land. This development has recently occurred in the shipbuilding and shipping industries. In this paper, we present a smart ship solution that operates, as a single system, a data collection platform that gathers ship operation data and a service platform that provides various services. When this smart ship solution was applied to an operating ship, it was determined that a variety of high-quality data could be collected compared to existing ship data collection systems. In addition, it was shown that of the operation data collected, analysis of parameters related to the main engine can be used to determine the overall state by deriving valid results and visualizing patterns. In conclusion, it was suggested that a ship's operation status could be checked more effectively and a comprehensive evaluation could be possible at the shore control center if the results of this study were extended to various ship equipment and analyzed together with the operational environment data.

최근 조선 해운 산업 분야에서 큰 관심을 보이고 있는 자율운항선박의 현실화를 위해서는 선박의 운항 상태를 육상에서 효과적으로 확인하고 진단할 수 있는 기술이 필수적으로 뒷받침되어야 한다. 본 논문에서는 선박 운항데이터를 수집하는 데이터 수집 플랫폼과 선내 및 육상 서비스를 제공하는 플랫폼이 하나의 시스템으로 동작하는 스마트선박 솔루션을 제시하고, 이를 실제 운항 선박에 적용하여 기존의 선박 데이터 수집 체계 대비 고품질의 다양한 데이터가 수집 가능함을 평가하였다. 또한 이렇게 수집된 데이터에서 주기관 관련 파라미터들의 데이터 분석을 수행하여 유효한 결과를 도출하고 패턴을 시각화하여 종합적인 상태를 판단하는데 활용 가능함을 보였다. 마지막으로 이러한 연구 결과를 선박의 다양한 장비로 확장 적용하고 운항 환경 데이터까지 함께 분석한다면 육상에서 선박의 운항 상황을 보다 효과적으로 확인하고 평가 가능함을 제시하였다.

Keywords

References

  1. Carlos, G., B. Lund, and E. Hagestuen(2018), Case Study: Ship Performance Evaluation by Application of Big Data, Hull Performance & Insights Conference.
  2. DNV-GL(2018), Digital Twins for Blue Denmark, DNV-GL Report No. 2018-0006, Rev. A.
  3. Garcia-Dominguez, A.(2015), Mobile applications, cloud and bigdata on ships and shore stations for increased safety on marine traffic; a smart ship project, IEEE International Conference on Industrial Technology(ICIT), pp. 1532-1537.
  4. Lim, Y. K., J. W. Park, O. S. Kim, and J. W. Lee(2011), Current status on the development of an integrated management system of the intelligent digital ship, Proceedings of Symposium of the Korean Institute of communication and Information Sciences, pp. 31-32.
  5. Mirovic, M., M. Milicevic, and I. Obradovic(2018), Big data in the maritime industry, NASE MORE, Vol. 65, No. 1, pp. 56-62. https://doi.org/10.17818/NM/2018/1.8
  6. Perera, L. P. and B. Mo(2016), Machine Intelligence for Energy Efficient Ships: A Big Data Solution. Maritime Engineering and Technology III, Guedes Soares & Santos (Eds.), Vol. 1, pp. 143-150.
  7. Rodseth, O. Jan, L. P. Perera, and B. Mo(2016), Big data in shipping-Challenges and opportunities, 15th International Conference on Computer and IT Applications in the Maritime Industries.
  8. Wang K., X. Yan, Y. Yuan, X. Jiang, G. Lodewijks, and R. R. Negenborn(2017), Study on route division for ship energy efficiency optimization based on big environment data, IEEE 4th International Conference on Transportation Information and Safety (ICTIS), pp. 111-116.

Cited by

  1. 전력 부하와 학습모델 기반의 전기추진선박의 배터리 연동 전력관리 알고리즘 vol.24, pp.9, 2019, https://doi.org/10.6109/jkiice.2020.24.9.1202