DOI QR코드

DOI QR Code

Plant Growth and Ascorbic Acid Content of Spinacia oleracea Grown under Different Light-emitting Diodes and Ultraviolet Radiation Light of Plant Factory System

식물공장시스템의 발광다이오드와 UVA 광원 하에서 자란 시금치 생육 및 아스코르브산 함량

  • Park, Sangmin (Dept. of Agricultural Science, Korea National Open University) ;
  • Cho, Eunkyung (Dept. of Agricultural Science, Korea National Open University) ;
  • An, Jinhee (Dept. of Agricultural Science, Korea National Open University) ;
  • Yoon, Beomhee (Dept. of Agricultural Science, Korea National Open University) ;
  • Choi, Kiyoung (Dept. of Controlled Agriculture, Kangwon National University) ;
  • Choi, Eunyoung (Dept. of Agricultural Science, Korea National Open University)
  • 박상민 (한국방송통신대학교 농학과) ;
  • 조은경 (한국방송통신대학교 농학과) ;
  • 안진희 (한국방송통신대학교 농학과) ;
  • 윤범희 (한국방송통신대학교 농학과) ;
  • 최기영 (강원대학교 시설농업과) ;
  • 최은영 (한국방송통신대학교 농학과)
  • Received : 2018.09.20
  • Accepted : 2018.12.11
  • Published : 2019.01.31

Abstract

The study aimed to determine effects of light emitting diode (LED) and the ultraviolet radiation (UVA) light of plant factory on plant growth and ascorbic acid content of spinach (Spinacia oleracea cv. Shusiro). Plants were grown in a NFT (Nutrient Film Technique) system for 28 days after transplanting with fluorescent light (FL, control), LEDs and UVA (Blue+UVA (BUV), Red and Blue (R:B(2:1)) + UVA (RBUV), Red+UVA (RUV), White LED (W), Red and Blue (R:B(2:1)), Blue (B), Red (R)) under the same light intensity ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and photoperiod (16/8h = day/night). All the light sources containing the R (R, RB, RUV, and RBUV) showed leaf epinasty symptom at 21 days after transplanting (DAT). Under the RUV treatment, the lengths of leaf and leaf petiole were significantly reduced and the leaf width was increased, lowering the leaf shape index, compared to the R treatment. Under the BUV, however, the lengths of leaf and leaf petiole were increased significantly, and the leaf number was increased compared to B. Under the RBUV treatment, the leaf length was significantly shorter than other treatments, while no significant difference between the RBUV and RB for the fresh and dry weights and leaf area. Dry weights at 28 days after transplanting were significantly higher in the R, RUV and BUV treatments than those in the W and FL. The leaf area was significantly higher under the BUV treatment. The ascorbic acid content of the 28 day-old spinach under the B was significantly higher, followed by the BUV, and significantly lower in FL and R. All the integrated data suggest that the BUV light seems to be the most suitable for growth and quality of hydroponically grown spinach in a plant factory.

본 연구는 식물공장시스템의 발광다이오드와 UVA 광원에서 자란 시금치 생육 및 아스코르브산 함량을 구명하고자 하였다. 시금치 '수시로' 품종은 정식 후 28일간 NFT 수경시스템에서 형광등(FL)을 대조구로 하여 적색광(R), 청색광(B), 적색과 청색의 혼합광(2:1비율)(R:B), 백색광(W), 적색광+UVA(RUV), 청색광+UVA(BUV), R:B(2:1)+UVA(RBUV) 총 8 종류 광에서 같은 광도($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)와 광주기(명/암 = 16/8h)로 재배되었다. R이 들어간 모든 광 처리구(R, RB, RUV, RBUV)에서 정식 21일 부터 잎 상편생장(leaf epinasty)이 나타났다. RUV 처리구에서 R에 비해 엽장과 엽병은 유의적으로 감소되고 엽폭은 유의적으로 증가되어 엽형지수가 낮은 결과를 보였다. 하지만, BUV 처리구에서 B에 비해 엽장과 엽병의 길이가 유의적으로 증가되었고 엽폭은 유의적 차이가 없었으며 엽수는 유의적으로 많았다. RBUV 처리구에서는 다른 처리구보다 엽장이 가장 짧았으며 RB 처리구와 비교하여 생체중, 건물중 및 엽면적 유의차는 없었다. 정식 후 28일 째에 측정된 지상부 건물중은 R, RUV 및 BUV 처리구에서 유의적으로 높았고 W와 FL에서 유의적으로 낮았다. 엽면적은 BUV 처리구에서 유의적으로 가장 높았다. 정식 28일째에 시금치 아스코르브산 함량은 B 처리구에서 유의적으로 가장 높았고 그 다음으로 BUV에서 높았으며 FL과 R에서 유의적으로 낮았다. 따라서 식물공장에서 시금치 재배 시 생육과 품질적인 측면에서 BUV광이 가장 적합한 것으로 보인다.

Keywords

References

  1. Appelgren, M. 1991. Effects of light quality on stem elongation of pelargonium in vitro. Sci. Hort. 45:345-351 https://doi.org/10.1016/0304-4238(91)90081-9
  2. Basahi, J.M., I.M. Ismail, and I.A. Hassan. 2014. Effects of enhanced UV-B radiation and drought stress on photosynthetic performance of lettuce (Lactuca sativa L. Romaine) plants. Annu. Res. Rev. Biol. 4:1739-1756. https://doi.org/10.9734/ARRB/2014/6638
  3. Bula, R.J., R.C. Morrow, T.W. Tibbitts, D.J. Barta, R.W. Ignatius, and T.S. Martin. 1991. Light-emitting diodes as a radiation sources for plants. HortSci. 26:203-205. https://doi.org/10.21273/HORTSCI.26.2.203
  4. Carvalho, R.F., M. Takaki, and R.A. Azevedo. 2011. Plant pigments: the many face of light perception. Acta Physiol. Plant. 33:241-248. https://doi.org/10.1007/s11738-010-0533-7
  5. Caldwell, C.R. and S.J. Britz. 2006. Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of greenhouse-grown leaf lettuce (Latuca sativa L.) cultivars. J. Food. Com. Anal. 16:617-644.
  6. Fukuda, N., M. Fujita, Y. Ohta, S. Sase, S. Nishimura and H. Ezura. 2008. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci. Hortic. 115:176-182. https://doi.org/10.1016/j.scienta.2007.08.006
  7. Heo, J.W., C.W. Lee, D. Chakrabarty, and K.Y. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regulat. 38:225-230. https://doi.org/10.1023/A:1021523832488
  8. Heo, JW, Lee YB, Kim DE, Chang YS, Chun CH. 2010. Effects of supplementary lighting on growth and biochemical parameters in Dieffenbachia amoena 'Camella'and Ficus elastica 'Melany'. Kor. J. Hortic. Sci. Technol. 28:51-58
  9. Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, WV. Leperen, and J. Harbinson. 2010. Blue light doseresponses of leaf photosynthesis, morphology, and chemical composition of cucumis sativus grown under different combinations of red and blue light. J. Expt. Bot. 61:3107-3117 https://doi.org/10.1093/jxb/erq132
  10. Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortSci. 45:1809-1814. https://doi.org/10.21273/HORTSCI.45.12.1809
  11. Khoshimkhujae, B., Kwon, J.K., Park, K.S., Choi, H.G. and S.Y. Lee. 2014. Effect of monochromatic UV-A LED irradiation on the growth of tomato seedlings. Hort. Environ. Biotechnol. 55(4):287-292. https://doi.org/10.1007/s13580-014-0021-x
  12. Kim, J.S. Shim, I.S., Kim, I.S., Kim, M.J. 2010. Changes of Cysteine, Glutathione and Ascorbic Acid Content in Chinese Cabbage, Head Lettuce and Spinach by the Growth Stage. Kor. J. Hortic. Sci. Technol. 28, 186-191.
  13. Kim, Y.H. and J.S. Lee. 2016. Growth and contents of anthocyanins and ascorbic acid in lettuce as affected by supplemental UV-A LED irradiation with different light quality and photoperiod. Hortic Sci Technol. 34:596-606. https://doi.org/10.7235/HORT.20160061
  14. KNHNES (Korea National Health and Nutrition Examination Survey). 2017. Korea Centers for Disease Control and Prevention.
  15. Korea Food and Drug Administration. 2008. Food standard codex. Korean Food Industry Association, Seoul, Korea.
  16. Kozai, T. 2007. Propagation, grafting and transplant production in closed systems with artificial lighting for commercialization in Japan. Propag. Ornam. Plants 7:145-149.
  17. Lee, E.H., J.N. Lee, J.S. Im, S.Y. Ryu, Y.S. Kwon, and S.W. Jang. 2011. Development of stable production technique of summer spinach (Spinacia oleracea L.) in soilless culture in the highlands. J. Bio-Env. Con. 20(1):21-26.
  18. Lee, J.S. and Y.H. Kim. 2014. Growth and anthocyanins of lettuce grown under red or blue light-emitting diodes with distinct peak wavelength. Kor. J. Hortic. Sci. Technol. 32:330-339.
  19. Lee, M.O., E.K. Cho, J.H. An, S.M. Park, and E.Y. Choi. 2018. Changes of Leaf Morphology and Cell Elongation of Spinacia oleracea Grown under Different Light-Emitting Diodes. Protected Hort. Plant Fac. 27(3):222-230. https://doi.org/10.12791/KSBEC.2018.27.3.222
  20. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67:59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  21. Maeda N., T. Hada, C. Murakami-Nakai, I. Kuriyama, H. Ichikawa, Y. Fukumory, J. Hiratsuka, H. Yoshida, K. Sakaguchi, Y. Mizushina. 2005. Effects of DNA polymerase inhibitory and antitumor activities of lipase-hydrolyzed glycolipid fractions form spinach. J Nutr Biochem 16: 121-128. https://doi.org/10.1016/j.jnutbio.2004.08.005
  22. Morrow, R.C. 2008. LED lighting in horticulture. HortSci. 43:1947-1950 https://doi.org/10.21273/HORTSCI.43.7.1947
  23. Nishimura, T., S.M.A. Zobayed, T. Kozai, and E. Goto. 2007. Medicinally important secondary metabolites and growth of Hypericum perforatum L. plants as affected by light quality and intensity. Environ. Control. Biol. 45:113-120. https://doi.org/10.2525/ecb.45.113
  24. Nishimura, T., K. Ohyama, E. Goto, and N. Inagaki. 2009. Concentration of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Sci. Hort. 122:134-137. https://doi.org/10.1016/j.scienta.2009.03.010
  25. Nishioka, N., T. Nishimura, K. Ohyama, M. Sumino, S.H. Malayeri, E. Goto, N. Inagaki, and T. Morota. 2008. Light quality affected growth and contents of essential oil components of Japanese mint plants. Acta Hort. 797:431-436. https://doi.org/10.17660/actahortic.2008.797.62
  26. Ohashi-Kaneko, K., R. Matsuda, E. Goto, K. Fujiwara, and K. Kurata. 2006. Growth of rice plants under red light with or without supplemental blue light. Soil Sci. Plant Nutr. 52:444-452. https://doi.org/10.1111/j.1747-0765.2006.00063.x
  27. Savvides, A., D. Fanourakis, and W. van Leperen. 2012. Coordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. J. Expt. Bot. 63(3):1135-1143. https://doi.org/10.1093/jxb/err348
  28. Sullivan, J.A. and X.W. Deng. 2003. From seed to seed: The role of photoreceptors in arabidopsis development. Dev Biol 260:289-297. https://doi.org/10.1016/S0012-1606(03)00212-4
  29. Tennessen, D.J., E.L. Singrass, and T.D. Sharkey. 1994. Light emitting diodes as a light source for photosynthesis research. Photosynthesis Res. 39:85-92. https://doi.org/10.1007/BF00027146
  30. Tsormpatsidis, E., R.G.C. Henbest, E.J. Davis, N.H. Battey, P. Hadley, and A. Wagstaffe. 2008. UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce 'Revolution' grown under polyethylene films. Environ. Exp. Bot. 63:232-239. https://doi.org/10.1016/j.envexpbot.2007.12.002
  31. Wang, H., M. Gu, J. Cui, K. Shi, T. Zhou, and J. Yu. 2009. Effects of light quality on $co_2$ assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B 96:30-37. https://doi.org/10.1016/j.jphotobiol.2009.03.010
  32. Wu, M.C., C.Y. Hou, C.M. Jiang, Y.T. Wang, C.Y. Wang, H.H. Chen, and H.M. Chang. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 101:1753-1758. https://doi.org/10.1016/j.foodchem.2006.02.010
  33. Zhao, X., X. Yu, E. Foo, G.M. Symons, J. Lopez, K.T. Bendehakkalu, J. Xiang, J.L. Weller, X. Liu, JB Reid, C. Lin. 2007. A study of gibberellin homeostasis and cryptochromemediated blue light inhibition of hypocotyl elongation. Plant Physiol. 145:106-118 https://doi.org/10.1104/pp.107.099838