DOI QR코드

DOI QR Code

A GIS-Based Spatial Analysis for Enhancing Classification of the Vulnerable Geographical Region of Highly Pathogenic Avian Influenza Outbreak in Korea

GIS 공간분석 기술을 이용한 국내 고병원성 조류인플루엔자 발생 고위험지역 분류

  • Pak, Son-Il (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Jheong, Weon-Hwa (Environmental Health Research Department, National Institute of Environmental Research) ;
  • Lee, Kwang-Nyeong (Animal and Plant Quarantine Agency)
  • 박선일 (강원대학교 수의과대학 및 동물의학종합연구소) ;
  • 정원화 (국립환경과학원 환경보건연구부) ;
  • 이광녕 (농림축산검역본부 역학조사과)
  • Received : 2018.06.23
  • Accepted : 2018.10.10
  • Published : 2019.02.28

Abstract

Highly pathogenic avian influenza (HPAI) is among the top infectious disease priorities in Korea and the leading cause of economic loss in relevant poultry industry. An understanding of the spatial epidemiology of HPAI outbreak is essential in assessing and managing the risk of the infection. Though previous studies have reported the majority of outbreaks occurred clustered in what are preferred to as densely populated poultry regions, especially in southwest coast of Korea, little is known about the spatial distribution of risk areas vulnerable to HPAI occurrence based on geographic information system (GIS). The main aim of the present study was to develop a GIS-based risk index model for defining potential high-risk areas of HPAI outbreaks and to explore spatial distribution in relative risk index for each 252 Si-Gun-Gu (administrative unit) in Korea. The risk index was derived incorporating seven GIS database associated with risk factors of HPAI in a standardized five-score scale. Scale 1 and 5 for each database represent the lowest and the highest risk of HPAI respectively. Our model showed that Jeollabuk-do, Chungcheongnam-do, Jeollanam-do and Chungcheongbuk-do regions will have the highest relative risk from HPAI. Areas with risk index value over 4.0 were Naju, Jeongeup, Anseong, Cheonan, Kochang, Iksan, Kyeongju and Kimje, indicating that Korea is at risk of HPAI introduction. Management and control of HPAI becomes difficult once the virus are established in domestic poultry populations; therefore, early detection and development of nationwide monitoring system through targeted surveillance of high-risk spots are priorities for preventing the future outbreaks.

Keywords

References

  1. Alexander D. Summary of avian influenza activity in Europe, Asia, Africa, and Australasia, 2002-2006. Avian Diseases 2007; 51: 161-166. https://doi.org/10.1637/7602-041306R.1
  2. Boyce WM, Sandrock C, Kreuder-Johnson C, Kelly T, Cardona C. Avian influenza viruses in wild birds: a moving target. Comp Immunol Microbiol Infect Dis 2009; 32: 275-286. https://doi.org/10.1016/j.cimid.2008.01.002
  3. Caron A, Gaidet N, de Garine-Wichatitsky M, Morand S, Cameron EZ. Evolutionary biology, community ecology and avian influenza research. Infect Genet Evol 2009; 9: 298-303. https://doi.org/10.1016/j.meegid.2008.12.001
  4. Chen R, Holmes EC. Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds. Virology 2009; 383: 156-161. https://doi.org/10.1016/j.virol.2008.10.015
  5. De Marco MA, Valentini A, Foni E, Savarese MC, Cotti C, Chiapponi C, Raffini E, Donatelli I, Delogu M. Is there a relation between genetic or social groups of mallard ducks and the circulation of low pathogenic avian influenza viruses? Vet Microbiol 2014; 170: 418-424. https://doi.org/10.1016/j.vetmic.2014.03.001
  6. Ducatez MF, Olinger CM, Owoade AA, De Landtsheer S, Ammerlaan W, Niesters HG, Osterhaus AD, Fouchier RA, Muller CP. Avian flu: multiple introductions of H5N1 in Nigeria. Nature 2006; 442: 37. https://doi.org/10.1038/442037a
  7. East IJ, Hamilton S, Sharp LA, Garner MG. Identifying areas of Australia at risk for H5N1 avian influenza infection from exposure to nomadic waterfowl moving throughout the Australo-Papuan region. Geospat Health 2008; 3: 17-27. https://doi.org/10.4081/gh.2008.228
  8. Galbraith CA, Jones T, Kirby J, Mundkur T. A review of migratory bird flyways and priorities for management. UNEP/CMS Secretariat, Bonn, Germany. CMS Technical Series No. 27. 2014.
  9. Gilbert M, Xiao X, Domenech J, Lubroth J, Martin V, Slingenbergh J. Anatidae migration in the western Palearctic and spread of highly pathogenic avian influenza H5NI virus. Emerg Infect Dis 2006; 12: 1650-1656. https://doi.org/10.3201/eid1211.060223
  10. Gilbert M, Newman SH, Takekawa JY, Loth L, Biradar C, Prosser DJ, Balachandran S, Subba Rao MV, Mundkur T, Yan B, Xing Z, Hou Y, Batbayar N, Natsagdorj T, Hogerwerf L, Slingenbergh J, Xiao X. Flying over an infected landscape: distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl. Ecohealth 2010; 7: 448-458. https://doi.org/10.1007/s10393-010-0672-8
  11. Githiru M, Lens L. Annual survival and turnover rates of an Afrotropical robin in a fragmented forest. Biodiv Conserv 2006; 15: 3315-3327. https://doi.org/10.1007/s10531-005-1213-6
  12. Groepper SR, DeLiberto TJ, Vrtiska MP, Pedersen K, Swafford SR, Hygnstrom SE. Avian influenza virus prevalence in migratory waterfowl in the United States, 2007-2009. Avian Dis 2014; 58: 531-540. https://doi.org/10.1637/10849-042214-Reg.1
  13. Hill NJ, Takekawa JY, Cardona CJ, Meixell BW, Ackerman JT, Runstadler JA, Boyce WM. Cross-seasonal patterns of avian influenza virus in breeding and wintering migratory birds: a flyway perspective. Vector Borne Zoonotic Dis 2012; 12: 243-253. https://doi.org/10.1089/vbz.2010.0246
  14. Hulse-Post DJ, Sturm-Ramirez KM, Humberd J, Seiler P, Govorkova EA, Krauss S, Scholtissek C, Puthavathana P, Buranathai C, Nguyen TD, Long HT, Naipospos TS, Chen H, Ellis TM, Guan Y, Peiris JS, Webster RG. Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia. Proc Natl Acad Sci USA 2005; 102: 10682-10687. https://doi.org/10.1073/pnas.0504662102
  15. Kalthoff D, Breithaupt A, Teifke JP, Globig A, Harder T, Mettenleiter TC, Beer M. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerg Infect Dis 2008; 14: 1267-1270. https://doi.org/10.3201/eid1408.080078
  16. Kang HM, Jeong OM, Kim MC, Kwon JS, Paek MR, Choi JG, Lee EK, Kim YJ, Kwon JH, Lee YJ. Surveillance of avian influenza virus in wild bird fecal samples from South Korea, 2003-2008. J Wildl Dis 2010; 46: 878-888. https://doi.org/10.7589/0090-3558-46.3.878
  17. Kida H, Yanagawa R, Matsuoka Y. Duck influenza lacking evidence of disease signs and immune response. Infect Immun 1980; 30: 547-553. https://doi.org/10.1128/iai.30.2.547-553.1980
  18. Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P. Predicting the global spread of H5N1 avian influenza. Proc Natl Acad Sci USA 2006; 103: 19368-19373. https://doi.org/10.1073/pnas.0609227103
  19. Kim JK, Negovetich NJ, Forrest HL, Webster RG. Ducks: the "Trojan horses" of H5N1 influenza. Influenza Other Respir Viruses 2009; 3: 121-128. https://doi.org/10.1111/j.1750-2659.2009.00084.x
  20. Kim KW, Kim ET, Lee GJ, Lee KN, Jheong WH, Pak SI. Spatial significance hotspot mapping for exploring spatial pattern of 2014-2015 highly pathogenic avian influenza outbreaks in Korea. J Prev Vet Med 2017; 41: 137-142. https://doi.org/10.13041/jpvm.2017.41.4.137
  21. Lee EK, Kang HM, Song BM, Lee YN, Heo GB, Lee HS, Lee YJ, Kim JH. Surveillance of avian influenza viruses in South Korea between 2012 and 2014. Virol J 2017; 14: 54. https://doi.org/10.1186/s12985-017-0711-y
  22. Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD, Estoepangestie AT, Chaisingh A, Auewarakul P, Long HT, Hanh NT, Webby RJ, Poon LL, Chen H, Shortridge KF, Yuen KY, Webster RG, Peiris JS. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 2004; 430: 209-213. https://doi.org/10.1038/nature02746
  23. Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 2005; 309: 1206. https://doi.org/10.1126/science.1115273
  24. Montalvo-Corral M, Lopez-Robles G, Hernandez J. Avian influenza survey in migrating waterfowl in Sonora, Mexico. Transbound Emerg Dis 2011; 58: 63-68. https://doi.org/10.1111/j.1865-1682.2010.01182.x
  25. Munster VJ, Fouchier RA. Avian influenza virus: of virus and bird ecology. Vaccine 2009; 27: 6340-6344. https://doi.org/10.1016/j.vaccine.2009.02.082
  26. Muzyka D, Pantin-Jackwood M, Spackman E, Smith D, Rula O, Muzyka N, Stegniy B. Isolation and Genetic Characterization of Avian Influenza Viruses Isolated from Wild Birds in the Azov-Black Sea Region of Ukraine (2001-2012). Avian Dis 2016; 60: 365-377. https://doi.org/10.1637/11114-050115-Reg
  27. NBR. National Institute of Biological Resources. 2015-2016 Winter waterbird census of Korea. 2016.
  28. Normile D. Avian influenza. Potentially more lethal variant hits migratory birds in China. Science 2005; 309: 231.
  29. Starick E, Beer M, Hoffmann B, Staubach C, Werner O, Globig A, Strebelow G, Grund C, Durban M, Conraths FJ, Mettenleiter T, Harder T. Phylogenetic analyses of highly pathogenic avian influenza virus isolates from Germany in 2006 and 2007 suggest at least three separate introductions of H5N1 virus. Vet Microbiol 2008; 128: 243-252. https://doi.org/10.1016/j.vetmic.2007.10.012
  30. Sturm-Ramirez KM, Hulse-Post DJ, Govorkova EA, Humberd J, Seiler P, Puthavathana P, Buranathai C, Nguyen TD, Chaisingh A, Long HT, Naipospos TS, Chen H, Ellis TM, Guan Y, Peiris JS, Webster RG. Are ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus in Asia? J Virol 2005; 79: 11269-11279. https://doi.org/10.1128/JVI.79.17.11269-11279.2005
  31. Takekawa JY, Newman SH, Xiao X, Prosser DJ, Spragens KA, Palm EC, Yan B, Li T, Lei F, Zhao D, Douglas DC, Muzaffar SB, Ji W. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis 2010; 54: 466-476. https://doi.org/10.1637/8914-043009-Reg.1
  32. Tian G, Zhang S, Li Y, Bu Z, Liu P, Zhou J, Li C, Shi J, Yu K, Chen H. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology 2005; 341: 153-162. https://doi.org/10.1016/j.virol.2005.07.011
  33. Ward MP, Maftei DN, Apostu CL, Suru AR. Association between outbreaks of highly pathogenic avian influenza subtype H5N1 and migratory waterfowl (family Anatidae) populations. Zoonoses Public Health 2009; 56: 1-9. https://doi.org/10.1111/j.1863-2378.2008.01150.x
  34. Wei W, Yuan-Yuan J, Ci Y, Ahan A, Ming-Qin C. Local spatial variations analysis of smear-positive tuberculosis in Xinjiang using geographically weighted regression model. BMC Public Health 2016; 16: 1058. https://doi.org/10.1186/s12889-016-3723-4
  35. Wibawa H, Bingham J, Nuradji H, Lowther S, Payne J, Harper J, Junaidi A, Middleton D, Meers J. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding. PLoS One 2014; 9: e83417. https://doi.org/10.1371/journal.pone.0083417
  36. Yamada I, Rogerson PA, Lee G. GeoSurveillance: a GIS-based system for the detection and monitoring of spatial clusters. J Geogr Syst 2009; 11: 155-173. https://doi.org/10.1007/s10109-009-0080-1

Cited by

  1. 고병원성 조류인플루엔자(HPAI) 발생농가 입지특성 vol.23, pp.4, 2020, https://doi.org/10.11108/kagis.2020.23.4.140