DOI QR코드

DOI QR Code

Genetic Algorithm Calibration Method and PnP Platform for Multimodal Sensor Systems

멀티모달 센서 시스템용 유전자 알고리즘 보정기 및 PnP 플랫폼

  • Received : 2018.11.22
  • Accepted : 2019.02.15
  • Published : 2019.02.28

Abstract

This paper proposes a multimodal sensor platform which supports plug and play (PnP) technology. PnP technology automatically recognizes a connected sensor module and an application program easily controls a sensor. To verify a multimodal platform for PnP technology, we build up a firmware and have the experiment on a sensor system. When a sensor module is connected to the platform, a firmware recognizes the sensor module and reads sensor data. As a result, it provides PnP technology to simply plug sensors without any software configuration. Measured sensor raw data suffer from various distortions such as gain, offset, and non-linearity errors. Therefore, we introduce a polynomial calculation to compensate for sensor distortions. To find the optimal coefficients for sensor calibration, we apply a genetic algorithm which reduces the calibration time. It achieves reasonable performance using only a few data points with reducing 97% error in the worst case. The platform supports various protocols for multimodal sensors, i.e., UART, I2C, I2S, SPI, and GPIO.

본 논문은 PnP(plug and play) 기술을 지원하는 멀티모달 센서 플랫폼을 제안하였다. PnP 기술은 센서 모듈이 연결이 되면 자동으로 인식하여 응용프로그램을 사용하여 손쉬운 센서 제어를 제공한다. 멀티모달 플랫폼을 검증하기 위해, 펌웨어를 사용하여 센서를 실험하였다. 센서 모듈이 연결되면 펌웨어는 센서 모듈을 인지하여 센서 데이터를 읽는다. 따라서, PnP 기술 지원을 통해 소프트웨어 설정 없이 자동으로 센서를 연동할 수 있게 된다. 측정한 센서 데이터는 다양한 왜곡에 의해 오류를 가지고 있다. 따라서, 본 논문은 다항식 계산을 통해 센서의 오류를 보상하고자 한다. 다항식 보상기의 계수를 찾기 위해 유전자 알고리즘 방식을 사용하였다. 실험결과 악조건에서 97%의 오류를 제거하였다. 또한, 제안하는 플랫폼은 다양한 프로토콜의 센서를 지원하기 위해 UART, I2S, I2C, SPI, GPIO를 지원한다.

Keywords

KCTSAD_2019_v14n1_69_f0001.png 이미지

Fig. 1 Block diagram of genetic algorithm processor

KCTSAD_2019_v14n1_69_f0002.png 이미지

Fig. 2 LFSR-12

KCTSAD_2019_v14n1_69_f0003.png 이미지

Fig. 3 LFSR-16

KCTSAD_2019_v14n1_69_f0004.png 이미지

Fig. 4 Two parents (P0, P1)

KCTSAD_2019_v14n1_69_f0005.png 이미지

Fig. 5 Two children (C0,C1) using 1-point crossover with the 5th point

KCTSAD_2019_v14n1_69_f0006.png 이미지

Fig. 6 Two children (C0,C1) using 2-point crossover with the 3rd and 6th points

KCTSAD_2019_v14n1_69_f0007.png 이미지

Fig. 7 Two children (C0,C1) using uniform crossover

KCTSAD_2019_v14n1_69_f0008.png 이미지

Fig. 8 Block diagram of fitness and selection

KCTSAD_2019_v14n1_69_f0009.png 이미지

Fig. 9 Sensor module for PnP platform

KCTSAD_2019_v14n1_69_f0010.png 이미지

Fig. 10 Sensor identification

KCTSAD_2019_v14n1_69_f0011.png 이미지

Fig. 11 Recognition process

KCTSAD_2019_v14n1_69_f0012.png 이미지

Fig. 12 Timing diagram for I2C interface

KCTSAD_2019_v14n1_69_f0013.png 이미지

Fig. 13 Block diagram for multimodal sensor platform

KCTSAD_2019_v14n1_69_f0014.png 이미지

Fig. 14 Sensor board for the multimodal sensor platform

KCTSAD_2019_v14n1_69_f0015.png 이미지

Fig. 15 Compensated Results for Ambient Light Sensor (TEMT6000)

KCTSAD_2019_v14n1_69_f0016.png 이미지

Fig. 16 Firmware for multimodal sensor platform

Table 1. Simulation Results using Genetic Algorithm

KCTSAD_2019_v14n1_69_t0001.png 이미지

References

  1. Y. Qu, G. Zhang, Z. Zou, Z. Liu, and J. Mao, "Active Multimodal Sensor System for Target Recognition and Tracking," Sensors, vol. 17, no. 7, June 2017, pp. 1-22. https://doi.org/10.1109/JSEN.2017.2761499
  2. T. Korthals, M. Kragh, P. Christiansen, H. Karstoft, R. N. Jorgensen, and U. Ruckert, "Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation," Front. Robot. AI, vol. 5, no. 28, Mar. 2018, p.1. https://doi.org/10.3389/frobt.2018.00001
  3. J. Jeonga, T. S. Yoonb, and J. B. Parka, "Multimodal Sensor-Based Semantic 3D Mapping for a Large-Scale Environment," Expert Systems with Applications, Elsevier, vol. 105, no. 1, Sept. 2018, pp. 1-10. https://doi.org/10.1016/j.eswa.2018.03.051
  4. J. H. Lee, B. Kim, and D. Kim, "Calibration Using Genetic Algorithm and PnP Platform Development for Multimodal Sensors," Proc. of the 7th Int. Conf. on Next Generation Computer and Information Technology (NGCIT), Sapporo, Japan, Aug. 2018, pp. 23-25.
  5. S. Park, S. Oh, S. Lee, J. Maeng, and Y. Ko, "A Study on the Temperature and Humidity Control Methodology of Smart Farm ased on Wireless Communication Network," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 4, 2018, pp. 851-857. https://doi.org/10.13067/JKIECS.2018.13.4.851
  6. B. Kim, J. Lee, T. Hwang, and D. Kim, "Design of Lightweight Artificial Intelligence System for Multimodal Signal Processing," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 5, 2018, pp. 1037-1042. https://doi.org/10.13067/JKIECS.2018.13.5.1037
  7. W. Oh, "A Fault Detection Scheme in Acoustic Sensor Systems Using Multiple Acoustic Sensors," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 2, 2016, pp. 203-208. https://doi.org/10.13067/JKIECS.2016.11.2.203
  8. J. Rivera, G. Herrera, and M. Chacon, "Improved progressive polynomial algorithm for self-calibration and optimal response in smart sensors," Measurement, Elsevier, vol. 42, no. 9, Nov. 2009, pp. 1395-1401. https://doi.org/10.1016/j.measurement.2009.05.010
  9. S. Rahili, J. Ghaisari, and A. Golfar, "Intelligent selection of calibration points using a modified progressive polynomial method," IEEE Trans. Instrum. Meas., vol. 61, no. 9, Apr. 2012, pp. 2519-2523. https://doi.org/10.1109/TIM.2012.2188662
  10. H. Shah, "Internet of Things (IoT) Rollouts in the Telehealth Industry," Telehealth and Medicine Today, vol. 2, no. 3, 2017, pp. 1-15.
  11. G. Horn and J. L. Huijsing, "Calibration using Digital Signal Processing," Springer International Series in Engineering and Computer Science book series, 1998, pp. 173-192.
  12. TTAK.KO-06.0290, Plug&Play based USN Sensor Access Interface, 2012.
  13. B. Sklar, Digital Communications: Fundamentals and Application., New Jersey: Prentice Hall, New Jersey, 2001.
  14. Z. Michalewicz, Genetic algorithms + data structures = evolution programs (3rd ed.). Berlin: Springer, 1996.
  15. A. Zalzala and P.J. Fleming, Genetic Algorithms in Engineering Systems. The Institution of Engineering and Technology, 1997.