DOI QR코드

DOI QR Code

On the Feasibility of Freak Waves Formation within the Harbor Due to the Presence of Infra-Gravity Waves of Bound Mode Underlying the Ever-Present Swells

Bound Mode의 외중력파에 의한 항내 이상파 생성가능성에 대하여

  • Cho, Yong Jun (Department of Civil Engineering, University of Seoul) ;
  • Bae, Jung Hyun (Department of Civil Engineering, University of Seoul)
  • 조용준 (서울시립대학교 토목공학과) ;
  • 배정현 (서울시립대학교 토목공학과)
  • Received : 2018.12.08
  • Accepted : 2019.02.25
  • Published : 2019.02.28

Abstract

We carry out the numerical simulation to test a hypothesis that freak waves can be triggered by the infragravity waves of bound mode underlying the ever-present swells and its constructive interaction with swells using the Tool Box called the ihFoam that has its roots on the OpenFoam, and Bi-spectrum. Numerical simulation is implemented for the SamChcuk LNG Plant where freak waves have been reported in front of the private wharf during its construction phase due to the uncompleted northern breakwater. Infra-gravity waves of bound mode is generated using the difference wave-wave interaction between the local wind waves of 7 s and a swell of 11.4 s based on the Bi-spectrum. For the sake of comparison, numerical simulation for infra-gravity waves of free mode is also carried out. Numerical results show that stem waves along the private wharf for SamChcuk LNG Plant can be triggered by the infra-gravity waves of bound mode coming from the north, which eventually leads to freak waves when encounters the reflected waves from the south jetty.

Bound mode의 외중력파와 이로 인한 보강간섭이 이상파 생성 기작이라는 가설을 확인하기 위해 OpenFoam 기반 Tool box인 ihFoam과 Bi-spectrum에 기초한 수치모의를 수행하였다. 수치모의는 건설 과정에서 이상파가 관측된 삼척 LNG 생산기지 전용부두를 대상으로 수행되었으며, Bound mode의 외중력파는 Bi-spectrum에 기반하여 출현빈도가 높은 주기가 7초인 국지 풍성파와 11.4초인 너울의 difference interaction으로 생성하였다. 또한 비교를 위해 비선형 Cnoidal wave, linear wave를 대상으로 한 수치모의도 병행하여 수행하였다. 모의결과 N 계열 bound mode의 외중력파에 의해 삼척 LNG 생산기지 전용부두를 따라 진행되는 연파가 생성되며, 이상파는 전술한 연파와 남측 도류제로부터의 반사파가 더해져 출현하는 것으로 모의되었다.

Keywords

References

  1. Ahn, K.M. (1996). The digital simulation of non-linear random waves. Coastal Engineering, 1996, 657-667.
  2. Berkhoff, J.C.W. (1972). Computation of combined refraction-diffraction. Coastal Engineering, 1973, 471-490.
  3. Biesel, F. and Suquet, F. (1951). Les apparails generateurs de houle en laboratoire, La Houille Blanche, 6, 2, 4, and 5. Laboratory Wave Generating Apparatus English version Project report 39 St Anthony Falls Hydraulic Laboratory, Minnesota University Minneapolis [1953].
  4. Cayley, A. (1895). An elementary treatise on elliptic functions, 2nd ed. London. G. Bell.
  5. Cho, Y.J. and Kang, Y.K. (2017). The Effect of Skewness of Nonlinear Waves on the Transmission Rate through a Porous Wave Breaker. Journal of Korean Society of Coastal and Ocean Engineers, 29(6), 1-13. https://doi.org/10.9765/KSCOE.2017.29.1.1
  6. Flick, R.E., Guza, R.T. and Inman, D.L. (1981). Elevation and velocity measurements of laboratory shoaling waves. Journal of Geophysical Research, 86, 4149-4160. https://doi.org/10.1029/JC086iC05p04149
  7. Frigaard, P. and Anderson, T.L. (2010). Technical Background Material for the Wave Generation Software AwaSys 5. DCE Technical Reports No. 64, Aalborg University.
  8. Goda, Y. (1985). Random seas and design of maritime structures. University of Tokyo Press.
  9. Izadparast, A. and Niedzwecki, J. (2012). Application of semiempirical probability distributions in wave-structure interaction problems. ASME 2012 Fluid Engineering Division Summer Meeting collocated with the ASME 2012 Heat transfer Summer conference and the ASME 2012 10th International Conference, Vol. 1: Symposia, Part A and B.
  10. Jung, T.H. and Ryu, Y.U. (2012). Treatment of Inclined Boundaries in a Finite Element Model for the Mild-Slope Equation. Journal of Korean Society of Coastal and Ocean Engineers, 24(2), 84-88. https://doi.org/10.9765/KSCOE.2012.24.2.084
  11. Lara, J.L., Garcia, N. and Losada, I.J. (2006). RANS modelling applied to random wave interaction with submerged permeable structures. Coastal Engineering, 53, 395-417. https://doi.org/10.1016/j.coastaleng.2005.11.003
  12. Lara, J.L., Losada, I.J. and Guanche, R. (2008). Wave interaction with low mound breakwaters using a RANS model. Ocean Eng., 35, 1388-1400. https://doi.org/10.1016/j.oceaneng.2008.05.006
  13. Lara, J.L., Ruju, A. and Losada, I.J. (2011). Reynolds Averaged Navier-Stokes modelling of long waves induced by a transient wave group on a beach. Proceedings of the Royal Society A, 467, 1215-1242. https://doi.org/10.1098/rspa.2010.0331
  14. Lara, J.L., Del Jesus, M. and Losada, I.J. (2012). Three-dimensional interaction of waves and porous structures. Part II: Model validation. Coast. Eng., 64, 26-46. https://doi.org/10.1016/j.coastaleng.2012.01.009
  15. Losada, I.J., Gonzalez-Ondina, J.M., Diaz, G. and Gonzalez, E.M. (2008). Numerical simulation of transient nonlinear response of semi-enclosed water bodies: model description and experimental validation. Coastal Engineering, 55(1), 21-34. https://doi.org/10.1016/j.coastaleng.2007.06.002
  16. Monaghan, J.J. (1994). Simulating free surface flows with SPH. Journal of Computational Physics, 110(2), 399-406. https://doi.org/10.1006/jcph.1994.1034
  17. Monaghan, J.J. and Kos, A. (1999). Solitary waves on a Cretan beach. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(3), 145-155. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)
  18. Monaghan, J.J. and Kos, A. (2000). Scott Russell's wave generator. Physics of Fluids, 12(3), 622-630. https://doi.org/10.1063/1.870269
  19. Peregrine, D.H. (1967). Long waves on a beach. Journal of Fluid Mechanics, 27(4), 815-827. https://doi.org/10.1017/S0022112067002605
  20. Phillips, O.M. (1977). The dynamics of the upper ocean (2nd ed.). Cambridge University Press.
  21. Shao, S. (2010). Incompressible SPH flow model for wave interactions with porous media. Coast. Eng., 57(3), 304-316. https://doi.org/10.1016/j.coastaleng.2009.10.012
  22. Tayfun, M.A. (1986). On narrow-band representation of ocean waves 1, theory. J. Geophys. Res., 91, 7743-7752. https://doi.org/10.1029/JC091iC06p07743
  23. Vanhoff, B. and Elgar, S. (1997). Simulating quadratically nonlinear random processes. International Journal of Bifurcation and Chaos, 7(06), 1367-1374. https://doi.org/10.1142/S0218127497001084
  24. Wiegel, R.L. (1964a). Oceanographical Engineering, Englewood Cliffs. New Jersey: Prentice Hall.
  25. Wiegel, R.L. (1964b). Water wave equivalent of Mach-reflection. Proc. 9th. Conf. Coastal Engng. A.S.C.E., 6, 82-102.