DOI QR코드

DOI QR Code

Current Concept of Biomimicry - Ecological Approach for Sustainable Development -

생태모방의 현재적 개념 - 지속가능한 발전을 위한 생태적 접근 -

  • Bae, Haejin (Dept. of Ecosystem Services & Research Planning, National Institute of Ecology) ;
  • Park, Eun Jin (Dept. of Ecosystem Services & Research Planning, National Institute of Ecology) ;
  • Lee, Eunok (Dept. of Ecosystem Services & Research Planning, National Institute of Ecology)
  • 배해진 (국립생태원 융합연구실) ;
  • 박은진 (국립생태원 융합연구실) ;
  • 이은옥 (국립생태원 융합연구실)
  • Received : 2018.08.07
  • Accepted : 2019.01.24
  • Published : 2019.02.28

Abstract

This study focused on defining concepts such as biology push (biology-based biomimicry) and technology pull (technology problem-based biomimicry) in the multidisciplinary field of ecological imitation and analyzing the status of related research and technology at the domestic and international levels. From an ecological point of view, biomimicry is defined as ecological mimicry in which ideas obtained through classification and investigation of principles of biology and ecology are applied to the concepts of engineering and technology. We also defined the biology push as the ecological imitation based on biological characteristics starting from an ecological viewpoint and technology pull as the ecological imitation based on technical problems starting from technical needs. Although biomimicry studies often focus on the technology development by finding stable and eco-friendly source materials from biological and ecological characteristics, we wanted to emphasize the unlimited potential of research of biomimicry that can begin with an idea based on biological and ecological characteristics. This study presents the need to develop the research and technology further based on the biological and ecological viewpoints that can contribute to future sustainable development.

본 연구에서는 생태학적 관점에서 biomimicry를 생태모방으로 정의하며, 생태모방에 대해 다학적 분야에서 정의되는 개념들을 비교하였다. 생태모방은 생물 생태특성에 대한 분류 및 조사 원리분석을 통해 얻어진 정보와 아이디어를 공학 및 기술 분야에 응용이 되는 개념으로 정리하였다. 또한 생물학, 생태학 및 공학적 관점에서 생태모방 연구와 기술개발을 진행하는 Biology Push(생물특성기반 생태모방)와 Technology Pull(기술문제기반 생태모방)방법을 비교하며, Biology Push를 생태학적 관점에서 시작하는 '생물특성기반 생태모방', Technology Pull을 기술필요에서 시작하는 '기술문제기반 생태모방'으로 정의하였다. 생태모방 연구동향을 살펴보면 안정적이고 친환경적인 원천 재료를 생물 생태 특성에서 찾아 기술개발에 초점이 맞춰진 사례가 대부분이나, 앞으로 생태모방 연구주제가 생물 생태 특성에서 비롯된 아이디어에서 착안되어 시작될 수 있는 연구분야의 잠재력에 대한 무한성을 시사하고자 한다. 향후 지속가능한 발전에 기여할 수 있는 생물생태학적 기반에 근거한 더 많은 연구와 기술개발이 필요함을 제시하고 있다.

Keywords

References

  1. AskNature(2015) Beak provides streamlining. https://asknature.org/strategy/beak-provides-streamlining/#.WwznpO6FOUk
  2. Choi, D.G., K.J. Lee, J.H. Jeong, K.D. Kim, J.H. Lee, A. Ali and E.S. Lee(2008) Fabrication of synthetic moth-eye anti-reflection structure using nanoimprint. The Korea Society of Mechanical Engineers 5: 13-17. (in Korean with English abstract)
  3. CSR Reprot(2005) Human Chemistry, Human Solutions. The Teijin Group. https://www.teijin.com/csr/report/pdf/csr_05_en_all.pdf
  4. Defense Advanced Research Projects Agency(2001) Tony Tether. https://www.darpa.mil/attachments/Testimony Archived(June%2026%202001).pdf
  5. Festo(2017) BionicMotionRobot. https://www.festo.com/PDF_Flip/corp/Festo_BionicMotionRobot/en/files/assets/common/downloads/ Festo_BionicMotionRobot_en.pdf
  6. Foreign policy(2014) Biomimetics: A short history. http://foreignpolicy.com/2014/12/01/biomimetics-a-short-history
  7. Geol, A.K.(2013) Biologically inspired design: A new program for computational sustainability. IEEE Computer Society 28: 80-84.
  8. Gilbert, G., T. Turner and R. Marchessault(2007) Army medical robotics research. Army Telemedicine and Advanced Technology Research Center.
  9. Han, H., S. Bail, B. Xu, J. Seo, S. Lee, S. Shin, J. Lee, J.H. Koo, Y. Mei, C. Pang and T. Lee(2017) Bioinspired geometry-switchable janus nanofibers for eye-readable H2 sensors. Advanced Functional Materials 27(29): 1701618. https://doi.org/10.1002/adfm.201701618
  10. ISO 18458(2015) Biomimetics - Terminology, concepts and methodology. https://www.iso.org/standard/62500.html
  11. Jeon, E.Y., B.H. Hwang, Y.J. Yang, B.J. Kim, B. Choi, G.Y. Jung and H.J. Cha(2015) Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking. Biomaterials 67: 11-19. https://doi.org/10.1016/j.biomaterials.2015.07.014
  12. Kim, H.S., J. Kim and H. Choi(2015) Effects of leading edge tubercles on the hydrodynamic performance of a humpback whale flipper model. The Korean Society of Mechanical Engineers 11: 73-76. (in Korean with English abstract)
  13. Kim, J., J. Lee, S. Yang, H.G. Kim, H. Kweon, S. Yoo and K. Kim(2016) Biologically inspired organic light-emitting diodes. Nano Letters 16(5): 2994-3000. https://doi.org/10.1021/acs.nanolett.5b05183
  14. Kim, J.H., J.H. Moon, S. Lee and J. Park(2010) Biologically inspired humidity sensor based on three-dimensional photonic crystals. Applied Physices Letters 97: 103701. https://doi.org/10.1063/1.3486115
  15. Kim, K., H. Kim, J.H. Lim and S.K. Lee(2016) Development of a desalination membrane bioinspired by mangrove roots for spontaneous filtration of sodium ions. Nano 10(12): 11428-11433.
  16. Lee, H., D. Um, Y. Lee, S. Lim, H. Kim, and H. Ko(2016) Octopus-Inspired Smart Adhesive Pads for Transfer Printing of Semiconducting Nanomembranes. Advanced Materials 28(34): 7457-7465. https://doi.org/10.1002/adma.201601407
  17. Lee, Y., Y. Yoo, J. Kim, S. Widhiarini, B. Park, H.C. Park, K.J. Yoon, and D. Byun(2009) Mimicking a superhydrophobic insect wing by argon and oxygen ion beam treatment on polytetrafluoroethylene film. Journal of Bionic Engineering 6(4): 365-370. https://doi.org/10.1016/S1672-6529(08)60130-4
  18. MIT Biomimetics Robotics Lab, http://biomimetics.mit.edu
  19. New York State Energy Research and Development Authority(1975) https://www.nyserda.ny.gov
  20. Office of Naval Research(2016) Mussel Power: ONR Researches Underwater Glue. https://www.onr.navy.mil/en/Media-Center/Press-Releases/2016/Underwater-Glue-And-Mussels
  21. Oka, K., S. Aoyagi, Y. Isono, G. Hashiguchi, and H. Fujita(2001) Fabrication of a micro needle for a trace blood test. Sensors and Actuators A: Physical 97-98(1): 478-485.
  22. Park, H. and H. Choi(2010) Aerodynamic characteristics of flying fish in gliding flight. The Journal of Experimental Biology 213: 3269-3279. https://doi.org/10.1242/jeb.046052
  23. Sagong, W., W. Jeon, and H. Choi(2013) Hydrodynamic characteristics of the sailfish (Istiophorus platypterus) and swordfish (Xiphias gladius) in gliding postures at their cruise speeds. Plos One 8(12): eB1323. (in Korean with English abstract)
  24. San Diego Zoo Global(2010) The Global Biomimicry Efforts : An Economic game changer. Fermanian Business&Economic Institute.
  25. San Diego Zoo Global(2013) Bioinspiration: An Economic Progress Report. Fermanian Business&Economic Institute.
  26. Shin, M., S. Park, B. Oh, K. Kim, S. Jo, M. Lee, S. Oh, S. Hong, E. Shin, K. Kim, S. Kang and H. Lee(2017) Complete prevention of blood loss with self-sealing haemostatic needles. Nature Materials 16: 147-152. https://doi.org/10.1038/nmat4758
  27. Smith, C.A., A. Bernett, E. Hanson and C. Garvin (2015) Tapping into nature, Terrapin Bright Green LLC. https://www.terrapinbrightgreen.com/tapping-into-nature
  28. Wang, C., E. Choi and J. Park(2018) High-voltage nanofluidic energy generator based on ion-concentration-gradients mimicking electric eels. Nano Energy 43: 291-299. https://doi.org/10.1016/j.nanoen.2017.11.054
  29. Wikipedia(2018) https://en.wikipedia.org/wiki/Codex_on_the_Flight_of_Birds
  30. Wyss Institute for Biologically Inspired Engineering(2009) https://wyss.harvard.edu
  31. Yamada, H., S. Takaoka and S. Hirose(2013) A snake-like robot for real-world inspection applications (the design and control of a practical active cord mechanism). Advanced Robotics 27(1): 47-60. https://doi.org/10.1080/01691864.2013.752318
  32. Yamanoto, M., N. Nishikawa, H. Mayama, Y. Nonomura, S. Yokojima, S. Nakamura and K. Uchida(2015) Theoretical explanation of the lotus effect: Superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf. Langmuir 31(26): 7355-7363. https://doi.org/10.1021/acs.langmuir.5b00670
  33. Yang, E., J.H. Son, S. Lee, P.G. Jablonski and H. Kim(2016) Water striders adjust leg movement speed to optimize takeoff velocity for their morphology. Nature Communications 7: 13698. https://doi.org/10.1038/ncomms13698