DOI QR코드

DOI QR Code

Research Trends of Cathode Materials for Lithium-Ion Batteries used in Electric Vehicles

전기자동차용 리튬이온전지를 위한 양극전극 분말 재료의 연구 동향

  • Shin, Dong-Yo (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
  • 신동요 (서울과학기술대학교 의공학 바이오 소재 융합 협동과정 신소재공학프로그램) ;
  • 안효진 (서울과학기술대학교 의공학 바이오 소재 융합 협동과정 신소재공학프로그램)
  • Received : 2019.01.22
  • Accepted : 2019.01.30
  • Published : 2019.02.28

Abstract

High performance lithium-ion batteries (LIBs) have attracted considerable attention as essential energy sources for high-technology electrical devices such as electrical vehicles, unmanned drones, uninterruptible power supply, and artificial intelligence robots because of their high energy density (150-250 Wh/kg), long lifetime (> 500 cycles), low toxicity, and low memory effects. Of the high-performance LIB components, cathode materials have a significant effect on the capacity, lifetime, energy density, power density, and operating conditions of high-performance LIBs. This is because cathode materials have limitations with respect to a lower specific capacity and cycling stability as compared to anode materials. In addition, cathode materials present difficulties when used with LIBs in electric vehicles because of their poor rate performance. Therefore, this study summarizes the structural and electrochemical properties of cathode materials for LIBs used in electric vehicles. In addition, we consider unique strategies to improve their structural and electrochemical properties.

Keywords

References

  1. J. H. Ang, C. Goh, A. A. F. Saldivar and Y. Li: Energies, 10 (2017) 610. https://doi.org/10.3390/en10050610
  2. L. Lu, X. Han, J. Li, J. Hua and M. Ouyang: J. Power Sources, 226 (2013) 272. https://doi.org/10.1016/j.jpowsour.2012.10.060
  3. G.-H. An, D.-Y. Lee and H.-J. Ahn: ACS Appl. Mater. Interfaces, 9 (2017) 12478. https://doi.org/10.1021/acsami.7b01286
  4. G.-H. An, D.-Y. Lee, Y.-J. Lee and H.-J. Ahn: ACS Appl. Mater. Interfaces, 8 (2016) 30264. https://doi.org/10.1021/acsami.6b10868
  5. D.-Y. Sin, I.-K. Park and H.-J. Ahn: RSC Adv., 6 (2016) 58823. https://doi.org/10.1039/C6RA06782D
  6. F. Wu and G. Yushin: Energy Environ. Sci., 10 (2017) 435. https://doi.org/10.1039/C6EE02326F
  7. P. Arora, R. E. White and M. Doyle: J. Electrochem. Soc., 145 (1998) 3647. https://doi.org/10.1149/1.1838857
  8. J. Vetter, P. Novak, M. R. Wagner, C. Veit, K.-C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche: J. Power Sources, 147 (2005) 269. https://doi.org/10.1016/j.jpowsour.2005.01.006
  9. K. Ozawa: Solid State Ion., 69 (1994) 212. https://doi.org/10.1016/0167-2738(94)90411-1
  10. D. K. Kim, P. Muralidharan, H.-W. Lee, Riccardo Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins and Y. Cui: Nano Lett., 8 (2008) 3948. https://doi.org/10.1021/nl8024328
  11. M. S. Islam and C. A. J. Fisher: Chem. Soc. Rev., 43 (2014) 185. https://doi.org/10.1039/C3CS60199D
  12. Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson and M. A. O'keefe: Nat. Mater., 2 (2003) 464. https://doi.org/10.1038/nmat922
  13. L. Xue, Q. Zhang, X. Zhu, L. Gu, J. Yue, Q. Xia, T. Xing, T. Chen, Y. Yao and H. Xia: Nano Energy, 56 (2019) 463. https://doi.org/10.1016/j.nanoen.2018.11.085
  14. G. Yang, G. Jia, X. Shangguan, Z. Zhu, Z. Peng, Q. Zhuge, F. Li and X. Cui: J. Electrochem. Soc., 164 (2017) A2889. https://doi.org/10.1149/2.0131713jes
  15. S. Liu, L. Xiong and C. He: J. Power Sources, 261 (2014) 285. https://doi.org/10.1016/j.jpowsour.2014.03.083
  16. C. Lv, J. Yang, Y. Peng, X. Duan, J. Ma, Q. Li and T. Wang: Electrochim. Acta, 297 (2019) 258. https://doi.org/10.1016/j.electacta.2018.11.172
  17. R. Sun, P. Jakes, S. Eurich, D. Holt, S. Yang, M. Homberger, U. Simon, H. Kungl and R. Eichel: Appl. Magn. Reson., 49 (2018) 415. https://doi.org/10.1007/s00723-018-0983-4
  18. M. M. Thackeray, P. J. Johnson, L. A. Picciotto, P.G. Bruce and J.B. Goodenough: Mater. Res. Bull., 19 (1984) 179. https://doi.org/10.1016/0025-5408(84)90088-6
  19. D.-Y. Shin, Y.-G. Lee and H.-J. Ahn: J. Alloy. Compd., 727 (2017) 1165. https://doi.org/10.1016/j.jallcom.2017.08.252
  20. M. Bini, P. Boni, P. Mustarelli, I. Quinzeni, G. Bruni and D. Capsoni: Solid State Ion., 320 (2018) 1. https://doi.org/10.1016/j.ssi.2018.02.026
  21. J.-H. Kim, A. Huq, M. Chi, N. P. W. Pieczonka, E. Lee, C. A. Bridges, M. M. Tessema, A. Manthiram, K. A. Persson and B. R. Powell: Chem. Mat., 26 (2014) 4377. https://doi.org/10.1021/cm501203r
  22. W. Sun, Y. Li, K. Xie, S. Luo, G. Bai, X. Tan and C. Zheng: Nano Energy, 54 (2018) 175. https://doi.org/10.1016/j.nanoen.2018.10.006
  23. L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang and J. B. Goodenough: Energy Environ. Sci., 4 (2011) 269. https://doi.org/10.1039/C0EE00029A
  24. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough: J. Electrochem. Soc., 144 (1997) 1188. https://doi.org/10.1149/1.1837571
  25. X. Wang, Z. Feng, J. Huang, W. Deng, X. Li, H. Zhang and Z. Wen: Carbon, 127 (2018) 149. https://doi.org/10.1016/j.carbon.2017.10.101
  26. C.-S. An, B. Zhang, L.-B. Tang, B. Xiao and J.-C. Zheng: Electrochim. Acta, 283 (2018) 385. https://doi.org/10.1016/j.electacta.2018.06.149
  27. B. Wang, Y. Xie, T. Liu, H. Luo, B. Wang, C. Wang, L. Wang, D. Wang, S. Dou and Y. Zhou: Nano Energy, 42 (2017) 363. https://doi.org/10.1016/j.nanoen.2017.11.040
  28. C. Gao, J. Zhou, G. Liu and L. Wang: J. Alloy. Compd., 727 (2017) 501. https://doi.org/10.1016/j.jallcom.2017.08.149