DOI QR코드

DOI QR Code

Geoacoustic Model at the YSDP-105 Long-core Site in the Mid-eastern Yellow Sea

황해 중동부 해역 YSDP-105 심부코어 지점의 지음향 모델

  • Ryang, Woo-Hun (Division of Science Education and Institute of Science Education, Chonbuk National University) ;
  • Jin, Jae-Hwa (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Hahn, Jooyoung (Agency for Defense Development)
  • 양우헌 (전북대학교 과학교육학부/과학교육연구소) ;
  • 진재화 (한국지질자원연구원) ;
  • 한주영 (국방과학연구소)
  • Received : 2018.12.03
  • Accepted : 2019.02.07
  • Published : 2019.02.28

Abstract

In the mid-eastern Yellow Sea, glacio-eustatic sea-level fluctuations and a regional tectonic subsidence have combined to represent an aggradational stacking pattern of sedimentary units during late Pleistocene-Holocene. The accumulated sediments are divisible into two-type units of Type-A and Type-B in high-resolution air-gun seismic profiles and the deep-drilled core of YSDP-105. Type-A unit largely comprises clast-rich coarse-grained sediments of non-marine to paralic origin, whereas Type-B unit consists mostly of tidal fine-grained sediments. Based on a bottom model of the sedimentary units, this study suggested a geoacoustic model of long-coring bottom layers at the YSDP-105 drilling site of the mid-eastern Yellow Sea. The geoacoustic model of 64-m depth below the seafloor with four-layer geoacoustic units was reconstructed in continental shelf strata at 45 m in water depth. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the seafloor using the Hamilton modeling method. We suggest that the geoacoustic model will be used for geoacoustic and underwater acoustic experiments of mid- and low-frequency reflecting on the deep bottom layers in the mid-eastern Yellow Sea.

황해 중동부에서 후기 플라이스토세-홀로세 동안 빙하기원 전 지구적 해수면 변동과 지역적인 지구조 침강은 퇴적 단위층의 중첩된 매적 양상으로 나타났다. 중첩 퇴적층은 고해상 에어건 탄성파 단면과 YSDP-105 시추코어에서 A형과 B형의 두가지 유형의 단위층으로 구분된다. A형 단위층은 주로 역이 풍부한 조립질 육성 및 인접 천해성 퇴적물인 반면, B형 단위층은 조석의 영향을 받은 세립질 퇴적물로 대부분 구성된다. 퇴적 단위층의 지층 모델에 근거하여, 이 연구는 황해 중동부 해역에 위치한 YSDP-105 시추 지점에서 심부 지층의 지음향 모델을 제시하였다. 수심 45 m의 대륙붕 지층에서 4개 지음향 단위층으로 구성된 64-m 심도의 지음향 모델을 구성하였다. 실제 모델링을 위해, 모델의 지음향 특성값은 Hamilton 모델링 방법을 이용하여 해저면 하부 현장 심도의 특성값으로 보정하였다. 이 지음향 모델은 황해 중동부 해역에서 심부 지층의 지음향 특성을 반영하는 중-저주파수 지음향 및 수중음향 실험을 위해 활용될 것이다.

Keywords

References

  1. ADD (Agency for Defense Development), 2000, Comparative study of seismic and lithologic units throughout analyses of deep-drilled cores. NSDC-417-000513, 50 p.
  2. Ainslie, M.A., 2010, Principles of sonar performance modeling. Springer, Berlin, Germany, 707 p.
  3. Carey, J.S., Sheridan, R.E., and Ashley, G.M., 1998, Late Quaternary sequence stratigraphy of a slowly subsiding passive margin, New Jersey continental shelf. American Association of Petroleum Geology, 82, 773-791.
  4. Carey, W.M., Doutt, J., Evans, R.B., and Dillman, L.M., 1995, Shallow-water sound transmission measurements on the New Jersey continental shelf. IEEE Journal of Oceanic Engineering, 20, 321-336. https://doi.org/10.1109/48.468247
  5. Catuneanu, O. and Zecchin, M., 2013, High-resolution sequence stratigraphy of clastic shelves II: Controls on sequence development. Marine and Petroleum Geology, 39, 26-38. https://doi.org/10.1016/j.marpetgeo.2012.08.010
  6. Chotiros, N.P., 2017, Acoustics of the seabed as a poroelastic medium. Springer Briefs in Oceanography, ASA Press and Springer, 99 p.
  7. Christie-Blick, N. and Driscoll, N.W., 1995, Sequence stratigraphy. Annual Review of Earth Planetary Sciences, 23, 451-478. https://doi.org/10.1146/annurev.ea.23.050195.002315
  8. Chough, S.K., Lee, H.J., and Yoon, S.H., 2000, Marine geology of Korean seas. Elsevier, Amsterdam, 313 p.
  9. Folk, R.L., 1968, Petrology of sedimentary rocks. Hemphill's, Austin, USA, 170 p.
  10. Folk, R.L. and Ward, W.C., 1957, A study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 3-27. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  11. Hamilton, E.L., 1971, Predictions of in-situ acoustics and elastic properties of marine sediments. Geophysics, 36, 266-284. https://doi.org/10.1190/1.1440168
  12. Hamilton, E.L., 1979, Sound velocity gradients in marine sediments. Journal of Acoustical Society of America, 65, 909-922. https://doi.org/10.1121/1.382594
  13. Hamilton, E.L. 1980, Geoacoustic modeling of the sea floor. Journal of the Acoustical Society of America, 68, 1313-1339. https://doi.org/10.1121/1.385100
  14. Hamilton, E.L., 1987, Acoustic properties of sediments. In Lara-Saenz, A., Ranz-Guerra, C., and Carbo-Fite, C. (eds.), Acoustics and Ocean Bottom. Cosejo Superior de Investigaciones Cientificas, Madrid, Spain, 3-58.
  15. Hernandez-Molina, F.J., Somoza, L., Rey, J., and Pomar, L., 1994, Late Pleistocene-Holocene sediments on the Spanish continental shelves: model for very high resolution sequence stratigraphy. Marine Geololgy, 120, 129-174. https://doi.org/10.1016/0025-3227(94)90057-4
  16. Jackson, D.R. and Richardson, M.D., 2007, High-frequency seafloor acoustics. Springer, New York, USA, 616 p.
  17. Jin, J.H. and Chough, S.K., 1998, Partitioning of transgressive deposits in the southeastern Yellow Sea: a sequence stratigraphic interpretation. Marine Geololgy, 149, 79-92. https://doi.org/10.1016/S0025-3227(98)00023-1
  18. Jin, J.H., Chough, S.K., and Ryang, W.H., 2002, Sequence aggradation and systems tracts partitioning in the ME Yellow Sea: roles of glacio-eustasy, subsidence and tidal dynamics. Marine Geology, 184, 249-271. https://doi.org/10.1016/S0025-3227(01)00281-X
  19. Katsnelson, B., Petnikov, V., and Lynch, J., 2012, Fundamentals of shallow water acoustics. Springer, New York, USA, 540 p.
  20. KIGAM (Korea Institute of Geology, Mining and Materials), 1991, Marine geological study of the continental shelf off Taean, west coast, Korea. KIGAM Research Report KR-91-5C, 216 p.
  21. KIGAM (Korea Institute of Geology, Mining and Materials), 1996, Yellow Sea drilling program for studies on Quaternary geology (Analyses of YSDP-102, YSDP-103, YSDP-104, YSDP-105 cores). KIGAM Research Report KR-96(T)-18, 595 p.
  22. KIGAM (Korea Institute of Geology, Mineral and Materials), 2014, Geological characterization of recent muddy sediment for reservoir potential, and in-situ analysis of shallow gas. KIGAM Research Report GP2012-005-2014(3), 370 p.
  23. KIGAM (Korea Institute of Geology, Mineral and Materials), 2017, Study on the coastal geohazard factors analysis, west coast, Korea. Oceans and Fisheries R&D Report R&D/2011-0016, 1161 p.
  24. Kim, G.Y., Narantsetseg, B., Lee, J.Y., Chang, T.S., Lee, G.S., Yoo, D.G., and Kim, S.P., 2018, Physical and geotechnical properties of drill core sediments in the Heuksan Mud Belt off SW Korea. Quaternary International, 468, 33-48. https://doi.org/10.1016/j.quaint.2017.06.018
  25. Lee, G.S., Kim, D.C., Yoo, D.G., and Yi, H.I., 2014, Stratigraphy of late Quaternary deposits using high resolution seismic profile in the southeastern Yellow Sea. Quaternary International, 344, 109-124. https://doi.org/10.1016/j.quaint.2014.07.023
  26. Lee, H.J. and Chough, S.K., 1989, Sediment distribution, dispersal and budget in the Yellow Sea. Marine Geology, 89, 195-205.
  27. Lee, H.J., Jeong, K.S., Han, S.J., and Bahk, K.S., 1988, Heavy minerals indicative of Holocene transgression in the southeastern Yellow Sea. Continental Shelf Research, 8, 255-266. https://doi.org/10.1016/0278-4343(88)90032-5
  28. Lee, H.J. and Yoon, S.H., 1997, Development of stratigraphy and sediment distribution in the northeastern Yellow Sea during Holocene sea-level rise. Journal of Sedimentary Research, 67, 341-349.
  29. Li, X.S., Zhao, Y.X., Feng, Z.B., Liu, C.G., Xie, Q.H., and Zhou, Q.J., 2016, Quaternary seismic facies of the South Yellow Sea shelf: depositional processes influenced by sea-level change and tectonic controls. Geological Journal, 51, 77-95.
  30. Liu, S., Li, P., Feng, A., Du, J., Gao, W., Xu, Y., Yu, X, Li, P., and Nan, X., 2016, Seismic and core investigation on the modern Yellow River Delta reveals the development of the uppermost fluvial deposits and the subsequent transgression system since the postglacial period. Journal of Asian Earth Sciences, 128, 158-180. https://doi.org/10.1016/j.jseaes.2016.07.009
  31. Mackenzie, K.V., 1981, Nine-term equation for sound speed in the oceans. Journal of the Acoustical Society of America, 70, 807-812. https://doi.org/10.1121/1.386920
  32. Marsset, T., Xia, D., Berne, S., Liu, Z., Bourillet, J.F., and Wang, K., 1996, Stratigraphy and sedimentary environments during the late Quaternary in the Eastern Bohai Sea (North China Platform). Marine Geololgy, 135, 97-114. https://doi.org/10.1016/S0025-3227(96)00038-2
  33. Milliman, J.C., Shen, H.T., Yang, Z., and Meade, R.H., 1985, Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Research, 4, 37-46. https://doi.org/10.1016/0278-4343(85)90020-2
  34. Mitchum, R.M. and Van Wagoner, J.C., 1991, High-frequency sequence and their stacking patterns: sequence-stratigraphic evidence of high-frequency eustatic cycles. Sedimentary Geology, 70, 131-160. https://doi.org/10.1016/0037-0738(91)90139-5
  35. Narantsetseg, B., Kim, G.Y., Kim, J.W., Chang, T.S., Lee, G.S., Choi, H., and Kim, S.P., 2014, Physical property variations related to seismic units in the offshore sediments of the Heuksan Mud Belt, southeastern Yellow Sea, Korea. Quaternary International, 344, 97-108. https://doi.org/10.1016/j.quaint.2014.03.037
  36. Nummedal, D., Riley, G.W., Templet, P.L., 1993, High-resolution sequence architecture: a chronostratigraphic model based on equilibrium profile studies. In Posamentier, H.W., Summerhayes, C.P., Haq, B.U., and Allen, G.P. (eds.), Sequence stratigraphy and facies associations. IAS Special Publication, 18, 55-68.
  37. Pinter, N. and Gardner, T.W., 1989, Construction of a polynomial model of glacio-eustatic fluctuation: estimating paleo-sea levels continuously through time. Geology, 17, 295-298. https://doi.org/10.1130/0091-7613(1989)017<0295:COAPMO>2.3.CO;2
  38. Posamentier, H.W., Jervey, M.T., and Vail, P.R., 1988, Eustatic controls on clastic deposition I-conceptual framework. In Wilgus, C.K., Hastings, B.S., Posamentier, H.W., Van Wagoner, J., Ross, C.A., and Kendall, C.G.St.C. (eds.), Sea-level changes: an integrated approach. SEPM Special Publication, 42, 109-124.
  39. Ryang, W.H., Jin, J.H., Jang, S.H., Kim, S.P., Kim, H.T., Lee, C.W., Chang, J.H., and Choi, J.H., 2001, Geoacoustic characteristics of Quaternary stratigraphic sequences in the mid-eastern Yellow Sea. The Sea. Journal of the Korean Society of Oceanography, 6, 81-92.
  40. Ryang, W.H., Kim, S.P., Kim, D.C., and Hahn, J., 2016, Geoacoustic model of coastal bottom strata at Jeongdongjin in the Korean continental margin of the East Sea. The Journal of the Korean Earth Sciences Society, 37, 200-210. https://doi.org/10.5467/JKESS.2016.37.4.200
  41. Ryang, W.H., Kwon, Y.K., Jin, J.H., Kim, H.T., and Lee, C.W., 2007, Geoacoustic velocity of basement and Tertiary successions of the Okgye and Bukpyeong coast, East Sea. The Journal of the Korean Earth Sciences Society, 28, 367-373. https://doi.org/10.5467/JKESS.2007.28.3.367
  42. Ryang, W.H., Kwon, Y.K., Kim, S.P., Kim, D.C., and Choi, J.H., 2014, Geoacoustic model at the DH-1 longcore site in the Korean continental margin of the East Sea. Geosciences Journal, 18, 269-279. https://doi.org/10.1007/s12303-014-0005-y
  43. Ryang, W.H., Lee, G.S., and Hahn, J., 2018, Geoacoustic model at the SSDP-105 long-core site in the Ulsan coastal area, the East Sea. The Journal of the Korean Earth Sciences Society, 39, 154-163. https://doi.org/10.5467/JKESS.2018.39.2.154
  44. Stoll, R.D., 1989, Sediment acoustics. Springer-Verlag, Berlin, 155 p.
  45. Yang, Z. and Lin, H., 1991, Quaternary processes in eastern China and their international correlation. A Report by the IGCP 218 Chinese Working Group. Geological Publishing House, Beijing, 139 p.
  46. Yoo, D.G., Chang, T.S., Lee, G.S., Kim, G.Y., Kim, S.P., and Park, S.C., 2016a, Late Quaternary seismic stratigraphy in response to postglacial sea-level rise at the mid-eastern Yellow Sea. Quaternary International, 392, 125-136. https://doi.org/10.1016/j.quaint.2015.07.045
  47. Yoo, D.G., Lee, G.S., Kim, G.Y., Kang, N.K., Yi, B.Y., Kim, Y.J., Chun, J.H., and Kong, G.S., 2016b, Seismic stratigraphy and depositional history of late Quaternary deposits in a tide-dominated setting: an example from the eastern Yellow Sea. Marine and Petroleum Geology, 73, 212-227. https://doi.org/10.1016/j.marpetgeo.2016.03.005
  48. Zhao, W., Zhang, X., Wang, Z., Chen, S., Wu, Z. and Mi, B., 2018, Quaternary high-resolution seismic sequence based on instantaneous phase of single-channel seismic data in the South Yellow Sea, China. Quaternary International, 468, 4-13. https://doi.org/10.1016/j.quaint.2018.01.014
  49. Zhou, J-X., Zhang, X-Z., Rogers, P.H., and Jarzynski, J., 1987, Geoacoustic parameters in a stratified sea bottom from shallow-water acoustic propagation. Journal of the Acoustical Society of America, 82, 2068-2074. https://doi.org/10.1121/1.395651