DOI QR코드

DOI QR Code

Frequency analysis of storm surge using Poisson-Generalized Pareto distribution

Poisson-Generalized Pareto 분포를 이용한 폭풍해일 빈도해석

  • Kim, Tae-Jeong (Department of Civil Engineering, Chonbuk National University) ;
  • Kwon, Hyun-Han (Department of Civil and Environmental Engineering, Sejong University) ;
  • Shin, Young-Seok (Department of Information & Communication Engineering, Honam University)
  • 김태정 (전북대학교 토목공학과 방재연구센터) ;
  • 권현한 (세종대학교 건설환경공학과) ;
  • 신영석 (호남대학교 정보통신공학과)
  • Received : 2018.12.17
  • Accepted : 2019.01.15
  • Published : 2019.03.31

Abstract

The Korean Peninsula is considered as one of the most typhoon related disaster prone areas. In particular, the potential risk of flooding in coastal areas would be greater when storm surge and heavy rainfall occurred at the same time. In this context, understanding the mechanism of the interactions between them and estimating the risk associated with the concurrent occurrence are of particular interests especially in low-lying coastal areas. In this study, we developed a Poisson-Generalized Pareto (Poisson-GP) distribution based storm surge frequency analysis model to combine the occurrence of the exceedance of a threshold, that is the peaks over threshold (POT), within a Bayesian framework. The storm surge frequency analysis technique developed through this study might contribute to the improvement of disaster prevention technology related to storm surge in the coastal area.

한반도는 지형학적 요건으로 인하여 태풍과 관련된 재난이 매년 발생하여 막대한 피해를 유발하고 있다. 태풍 내습시 폭풍해일과 집중호우가 동시에 발생한다면 해안지역의 침수피해는 더욱 증가할 것으로 사료된다. 이러한 관점에서 태풍과 폭풍해일의 상호의존성을 정량적으로 규명하는 것은 해안지역의 재해분석에 필수적이다. 본 연구에서는 Bayesian 기법을 기반으로 절점기준을 초과하는 임계값의 초과확률을 산정하기 위하여 Poisson 분포와 Generalized-Pareto 분포를 이용한 Poisson-GP 폭풍해일 빈도해석 기법을 개발하였다. 본 연구를 통하여 개발된 Poisson-GP 폭풍해일 빈도해석 기법은 설계해수면의 불확실성을 정량적으로 제시하였으며 해안지역의 폭풍해일 관련 방재기술 향상에 기여할 것으로 판단된다.

Keywords

SJOHCI_2019_v52n3_173_f0001.png 이미지

Fig. 1. Flow diagram of the storm surge frequency analysis

SJOHCI_2019_v52n3_173_f0002.png 이미지

Fig. 2. Locations of sea level stations by Korea hydrographic and oceanographic agency

SJOHCI_2019_v52n3_173_f0003.png 이미지

Fig. 3. The number of typhoons and its trend during the period of 1987∼2016

SJOHCI_2019_v52n3_173_f0004.png 이미지

Fig. 4. Time series of low pressure of typhoons during the period 1987∼2016

SJOHCI_2019_v52n3_173_f0005.png 이미지

Fig. 5. Design storm surge level and its uncertainty over all stations

SJOHCI_2019_v52n3_173_f0006.png 이미지

Fig. 5. Design storm surge level and its uncertainty over all stations (Continue)

Table 1. Sea Level observatory used in this study

SJOHCI_2019_v52n3_173_t0001.png 이미지

Table 2. The yearly number of typhoons, with number affecting the Korean peninsula in parentheses

SJOHCI_2019_v52n3_173_t0002.png 이미지

Table 4. Significance test results of storm surge data set

SJOHCI_2019_v52n3_173_t0003.png 이미지

Table 3. Sea level stations used in this study (unit: cm)

SJOHCI_2019_v52n3_173_t0004.png 이미지

Table 6. Estimated scale parameter (σ) of the GP distribution and its credible bounds

SJOHCI_2019_v52n3_173_t0005.png 이미지

Table 7. Estimated shape parameter (ξ) of the GP distribution and its credible bounds

SJOHCI_2019_v52n3_173_t0006.png 이미지

Table 5. Estimated parameter (λ) of the Poisson distribution and its uncertainty bounds

SJOHCI_2019_v52n3_173_t0007.png 이미지

References

  1. Cabanes, C., Cazenave, A., and Le Provost, C. (2001). "Sea level rise during past 40 years determined from satellite and in situ observations." Science, Vol. 294, No. 5543, pp. 840-842. https://doi.org/10.1126/science.1063556
  2. Church, J. A., and White, N. J. (2006). "A 20th century acceleration in global sea‐level rise." Geophysical research letters, Vol. 33, No. 1.
  3. Emanuel, K. (2005). "Increasing destructiveness of tropical cyclones over the past 30 years." Nature, Vol. 436, No. 7051, pp. 686. https://doi.org/10.1038/nature03906
  4. Fleming, J. G., Fulcher, C. W., Luettich, R. A., Estrade, B. D., Allen, G. D., and Winer, H. S. (2008). "A real time storm surge forecasting system using ADCIRC." In Estuarine and Coastal Modeling, pp. 893-912.
  5. Furrer, E. M., and Katz, R. W. (2008). "Improving the simulation of extreme precipitation events by stochastic weather generators." Water Resources Research, Vol. 44, No. 12.
  6. Gelman, A. (2006). "Prior distributions for variance parameters in hierarchical models." Bayesian analysis, Vol. 1, No. 3, pp. 515-534. https://doi.org/10.1214/06-BA117A
  7. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. John Wiley & Sons, New Jersey, USA.
  8. Guo, Y., Zhang, J., Zhang, L., and Shen, Y. (2009). "Computational investigation of typhoon-induced storm surge in Hangzhou Bay, China." Estuarine, Coastal and Shelf Science, Vol. 85, No. 4, pp. 530-536. https://doi.org/10.1016/j.ecss.2009.09.021
  9. Kendall, K. (1975). "Thin-film peeling-the elastic term." Journal of Physics D: Applied Physics, Vol. 8, No. 13, p. 1449. https://doi.org/10.1088/0022-3727/8/13/005
  10. Kim, T.-J., and Kwon, H.-H. (2016). "Analysis of Changes in Rainfall Frequency Under Different Thresholds and Its Synoptic Pattern." Journal of Korean Society of Civil Engineers, Vol. 36, No. 5, pp. 791-803. https://doi.org/10.12652/Ksce.2016.36.5.0791
  11. Kim, T.-J., Hwang, K.-N., and Kwon, H.-H., (2018). "Stochastic analysis of typhoon-induced storm surge in the coastal area of the Korean peninsula: inference from a nonstationary, Bayesian Poisson generalized Pareto distribution." Journal of Coastal Research, No. 85, pp. 896-900.
  12. Kim, T.-J., Kwon, H.-H., and Kim, K. Y. (2014). "Assessment of typhoon trajectories and synoptic pattern based on probabilistic cluster analysis for the typhoons affecting the korean peninsula." Journal of Korea Water Resources Association, Vol. 47, No. 4, pp. 385-396. https://doi.org/10.3741/JKWRA.2014.47.4.385
  13. Kwon, S. J., Moon, I. J., and Lee, E. I. (2008). "A Study on the longterm variations of annual maximum surge heights at sokcho and mukho harbors." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 20, No. 6, pp. 564-574.
  14. Lee, J.-J., Kwon, H.-H., and Hwang, K.-N. (2010). "Concept of seasonality analysis of hydrologic extreme variables and design rainfall estimation using nonstationary frequency analysis." Journal of Korea Water Resources Association, Vol. 43, No. 8, pp. 733-745. https://doi.org/10.3741/JKWRA.2010.43.8.733
  15. Lima, C. H., Lall, U., Troy, T. J., and Devineni, N. (2015). "A climate informed model for nonstationary flood risk prediction: Application to Negro River at Manaus, Amazonia." Journal of Hydrology, Vol. 522, pp. 594-602 https://doi.org/10.1016/j.jhydrol.2015.01.009
  16. Lin, I. I., Wu, C. C., Emanuel, K. A., Lee, I. H., Wu, C. R., and Pun, I. F. (2005). "The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy." Monthly Weather Review, Vol. 133, No. 9, pp. 2635-2649.
  17. Lin, N., Emanuel, K. A., Smith, J. A., and Vanmarcke, E. (2010). "Risk assessment of hurricane storm surge for New York City." Journal of Geophysical Research: Atmospheres, Vol. 115, No. D18.
  18. Lopeman, M., Deodatis, G., and Franco, G. (2015). "Extreme storm surge hazard estimation in lower Manhattan." Natural Hazards, Vol. 78, No. 1, pp. 355-391. https://doi.org/10.1007/s11069-015-1718-6
  19. Mann, H. B. (1945). "Nonparametric tests against trend." Econometrica: Journal of the Econometric Society, Vol. 13, No. 3, pp. 245-259. https://doi.org/10.2307/1907187
  20. Mann, H. B. (1945). "Nonparametric tests against trend." Econometrica: Journal of the Econometric Society, Vol. 13, No. 3, pp. 245-259. https://doi.org/10.2307/1907187
  21. Martins, E. S., and Stedinger, J. R. (2001). "Generalized maximum likelihood pareto‐poisson estimators for partial duration series." Water Resources Research, Vol. 37, No. 10, pp. 2551-2557. https://doi.org/10.1029/2001WR000367
  22. Mattocks, C., Forbes, C., and Ran, L. (2006). "Design and implementation of a real-time storm surge and flood forecasting capability for the State of North Carolina." UNC-CEP Technical Report, Vol. 103.
  23. Papagiannaki, K., Lagouvardos, K., and Kotroni, V. (2013). "A database of high-impact weather events in Greece: a descriptive impact analysis for the period 2001-2011." Natural Hazards and Earth System Sciences, Vol. 13, No. 3, pp. 727. https://doi.org/10.5194/nhess-13-727-2013
  24. Pickands III, J. (1975). "Statistical inference using extreme order statistics." The Annals of Statistics, Vol. 3, No. 1, pp. 119-131. https://doi.org/10.1214/aos/1176343003
  25. Pugh, D. (2004). Changing sea levels: effects of tides, weather and climate. Cambridge University Press, Cambridge, England.
  26. Rego, J. L., and Li, C. (2010). "Nonlinear terms in storm surge predictions: effect of tide and shelf geometry with case study from hurricane rita." Journal of Geophysical Research: Oceans, Vol. 115, p. C06020. https://doi.org/10.1029/2009jc005285
  27. Renard, B., Lang, M., and Bois, P. (2006). "Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data." Stochastic environmental research and risk assessment, Vol. 21, No. 2, pp. 97-112. https://doi.org/10.1007/s00477-006-0047-4
  28. Salmi, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen's slope estimates-the Excel template application MAKESENS. Ilmatieteen laitos.
  29. Shi, J., and Cui, L. (2012). "Characteristics of high impact weather and meteorological disaster in Shanghai, China." Natural hazards, Vol. 60, No. 3, pp. 951-969. https://doi.org/10.1007/s11069-011-9877-6
  30. Solari, S., and Losada, M. A. (2012). "A unified statistical model for hydrological variables including the selection of threshold for the peak over threshold method." Water Resources Research, Vol. 48, No. 10.
  31. Suh, S. W., Lee, H. Y., Kim, H. J., and Park, J. S. (2012). "Near real-time immediate forecasting of storm surge based on typhoon advisories." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 24, No. 5, pp. 352-365. https://doi.org/10.9765/KSCOE.2012.24.5.352
  32. Suzuki, S., Vadas, S. L., Shiokawa, K., Otsuka, Y., Kawamura, S., and Murayama, Y. (2013). "Typhoon‐induced concentric airglow structures in the mesopause region." Geophysical Research Letters, Vol. 40, No. 22, pp. 5983-5987. https://doi.org/10.1002/2013GL058087
  33. Wakelin, S. L., Woodworth, P. L., Flather, R. A., and Williams, J. A. (2003). "Sea‐level dependence on the NAO over the NW european continental shelf." Geophysical Research Letters, Vol. 30, No. 7.
  34. Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. R. (2005). "Changes in tropical cyclone number, duration, and intensity in a warming environment." Science, Vol. 309, No. 5742, pp. 1844-1846. https://doi.org/10.1126/science.1116448
  35. Wi, S., Valdés, J. B., Steinschneider, S., and Kim, T. W. (2016). "Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima." Stochastic environmental research and risk assessment, Vol. 30, No. 2, pp. 583-606. https://doi.org/10.1007/s00477-015-1180-8