DOI QR코드

DOI QR Code

An Optimization of distributed Hydrologic Model using Multi-Objective Optimization Method

다중최적화기법을 이용한 분포형 수문모형의 최적화

  • Kim, Jungho (Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University) ;
  • Kim, Taegyun (Department of Landscape Architecture, Gyeongnam National Univ. of Science & Tech.)
  • Received : 2018.11.02
  • Accepted : 2019.01.15
  • Published : 2019.02.28

Abstract

In this study, the multi-objective optimization method is attemped to optimize the hydrological model to estimate the runoff through two hydrological processes. HL-RDHM, a distributed hydrological model that can simultaneously estimate the amount of snowfall and runoff, was used as the distributed hydrological model. The Durango River basin in Colorado, USA, was selected as the watershed. MOSCEM was used as a multi-objective optimization method and parameter calibration and hydrologic model optimization were tried by selecting 5 parameters related to snow melting and 13 parameters related to runoff. Data from 2004 to 2005 were used to optimize the model and verified using data from 2001 to 2004. By optimizing both the amount of snow and the amount of runoff, the RMSE error can be reduced from 7% to 40% of the simulation value based on the initial solution at three SNOTEL points based on the RMSE. The USGS observation point of the outflow is improved about 40%.

본 연구에서는 다중최적화기법을 이용하여 2가지 수문학적 과정을 통하여 유출량을 산정하는 수문모형의 모형 최적화를 시도하였으며, 수문모형으로는 융설량과 유출량을 동시에 산정할 수 있는 분포형 수문모형인 HL-RDHM을 이용하였다. 대상유역으로는 융설량 자료를 수집할 수 있는 미국 콜로라도의 Durango River 유역을 선정하였다. 다중최적화기법으로는 MOSCEM을 활용하였으며, 융설과 관련된 매개변수 5개와 유출에 관련된 매개변수 13개를 선정하여 매개변수 보정과 수문모형 최적화를 시도하였다. 모형 최적화를 위해 2004 - 2005년의 자료가 활용되었고, 2001 - 2004년 자료를 이용하여 검증하였다. 융설량과 유출량을 동시에 최적화함으로써 RMSE 기준으로, 3개의 SNOTEL 지점에서 초기해에 의한 모의치 보다 7% - 40%까지 RMSE 오차를 줄일 수 있었고, 유출구의 USGS 관측점에서 초기해에 비해 약 40% 값이 개선됨을 확인하였다.

Keywords

HKSJBV_2019_v21n1_1_f0001.png 이미지

Fig. 1. The Durango River Basin, Colorado and grids

HKSJBV_2019_v21n1_1_f0002.png 이미지

Fig. 2. Example of MOSCEM Algorithm by 2 variabes

HKSJBV_2019_v21n1_1_f0003.png 이미지

Fig. 3. The parameterization for model parameters using soil type and land use

HKSJBV_2019_v21n1_1_f0004.png 이미지

Fig. 4. The Paretosets, the Best Paretoset, Compromised Solution

HKSJBV_2019_v21n1_1_f0005.png 이미지

Fig. 5. The parameter estimations for snow and water balance components

HKSJBV_2019_v21n1_1_f0006.png 이미지

Fig. 6. The snow melt time-series measured at 3 SNOTEL stations for model calibration

HKSJBV_2019_v21n1_1_f0007.png 이미지

Fig. 7. The streamflow time-series measured at USGS station for model calibration

HKSJBV_2019_v21n1_1_f0008.png 이미지

Fig. 8. The snow melt time-series measured at USGS station for model validation

HKSJBV_2019_v21n1_1_f0009.png 이미지

Fig. 9. The streamflow time-series measured at USGS station for model validation

Table 1. The parameters of SNOW 17 Model to be calibrated in HL-RDHM

HKSJBV_2019_v21n1_1_t0001.png 이미지

Table 2. The parameters of SAC-SEA Model to be calibrated in HL-RDHM

HKSJBV_2019_v21n1_1_t0002.png 이미지

References

  1. Ajami, K. N., Gupta, H., Wagener, T., and Sorooshian, S. (2004) Calibration of a Semi-Distributed Hydrologic Model for Streamflow Estimation along a River System. Journal of Hydrology, Vol. 298, pp. 112-135 https://doi.org/10.1016/j.jhydrol.2004.03.033
  2. Anderson, E. A. (1973) National Weather Service River Forecast System-snow accumulation and ablation model. NOAA Technical Memorandum NWS HYDRO-17, 217
  3. Anderson, E. A. (2006) Snow accumulation and ablation model: NWSRFS (National Weather Service River Forecast System) Snow17 Snow Model. in User Manual for Release 81
  4. Burnash, R. J. C. (1995) The NWS river forecast system - catchment modeling. In: Singh, V.P. (Ed.), Computer Models of Watershed Hydrology. Water Resources Publications, Littleton, Colorado, USA, pp. 311-366
  5. Effland, W. R., D. Helms, H. Eswaran, P. Reich, S. Waltman and A. Yeh (2006) A Digital Collection of Selected Historical Publications on Soil Survey and Soil Classification in the United States of America", Soil Survey Division, USDA
  6. Natural Resources Conservation Service, Washington, DC. Farnsworth, R. K. and Thompson, E. S. (1982) Mean monthly, seasonal, and annual pan evaporation for the United States. NOAA Technical Report NWS 34, National Oceanic and Atmospheric Administration, Washington, DC, p. 85.
  7. Franz, J. K., and Karsten, R., L. (2013) Calibration of a Distributed Snow Model using MODIS snow cover area data. Journal of Hydrology, Vol. 494, pp. 160-175 https://doi.org/10.1016/j.jhydrol.2013.04.026
  8. Gupta, H. V., Sorroshian, S., and Yapo, O., P. (1998) Toward Improved Calibration of Hydrologic Models: Multiple and Noncommensurable meausres of Information. WRR, Vol. 34, No. 4, pp. 751-763 https://doi.org/10.1029/97WR03495
  9. Gupta, H. V., Bastidas, L. A., Sorooshian, S., Shuttleworth, W. J., and Yang, Z. L. (1999) Parameter estimation of a land surface scheme using multicriteria methods. Journal of Geophysical Research, Vol. 104, D16, pp. 19,491-19,503 https://doi.org/10.1029/1999JD900154
  10. Homer, C. G., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N. D., Wickham, J. D., and Megown, K. (2015) Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, Vol., 81, No. 5, pp.345-354
  11. Isenstein, M., E., Wi, S., Yang, E. C. Y., and Brown, C. (2015) Calibration of a Distributed Hydrologic Model using Streamflow and Remote Sensing Snow Data. World Environmental and Water Resources Congress, ASCE 2015
  12. Kim. T., Jung. I.W.,Koo. B.Y.,Bae. D.H. (2007), Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (I). Journal of Korea Water Resource Association, Vol. 40, No. 9, pp. 677-685 https://doi.org/10.3741/JKWRA.2007.40.9.677
  13. Koren, V., Reed, S., Smith, M., Zhang, Z., and Seo, D.J. (2004) Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology, Vol. 291, pp. 297-318. https://doi.org/10.1016/j.jhydrol.2003.12.039
  14. Lee. G.H., Yu. W.S., Jung. K.S.,Cho. B.H. (2010) Assessment of Rainfall-sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Mehtod", Journal of Korea Water Resource Association, Vol. 43, No. 12, pp.1011-1027. https://doi.org/10.3741/JKWRA.2010.43.12.1011
  15. Rajib, A., M., Merwade, V., and Yu, Z. (2016) "Multi-objective Calibration of a Hydrologic Model using Spatially Distributed Remotely Sensed/In-situ Soil Moisture." Journal of Hydrology, Vol. 536, pp. 192-207 https://doi.org/10.1016/j.jhydrol.2016.02.037
  16. Reed, S., Maidment, D. R. (1999) Coordinate transformations for using NEXRAD data in GIS-based hydrologic modeling. Journal of Hydrologic Engineering, Vol. 4, pp. 174-183 https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(174)
  17. Robock, A., Luo, L., Wood, E.F., Wen, F., Mictell, K.E., Houser, P.R., Schaake, J.C., Lohmann, D., Cosgrove, B., Sheffield, J., Duan, Q., Higgins, R.W., Pinker, E.T., Tarpley, J.D., Basara, J.B., Crawford, K.C. (2003) Evaluation of the North American Land Data Assimilation System over the southern Great Plains during warm season. J. Geophys. Res. Vol. 108 (D22), 8846. http://dx.doi.org/10.1029/2002JD003245.
  18. Robock, A., Schlosser, C.A., Vinnikov, K.Ya., Speranskaya, N.A., Entin, J.K., Qiu, S. (1998) Evaluation of the AMIP soil moisture simulations. Global and Planetary Change 19, pp. 181-208. https://doi.org/10.1016/S0921-8181(98)00047-2
  19. Smith, M., Seo, D.-J., Koren, V., Reed, S. M., Zhang, Z., Duan, Q., Moreda, F., and Cong, S. (2004) The distributed model intercomparison project (DMIP): Motivation and experiment design. Journal of Hydrology, 298, pp. 4-26 https://doi.org/10.1016/j.jhydrol.2004.03.040
  20. Smith, M., Koren, V., Reed, S. M., Zhang, Z., Zhang, Y., Moreda, F., Cui, Z., Mizukami, N., Anderson, E. A., and Cosgrove, B. A. (2012a) The distributed model intercomparison project - Phase 2: Motivation and design of the Oklahoma experiments. Journal of Hydrology, Vol. 418-419, pp. 3-16 https://doi.org/10.1016/j.jhydrol.2011.08.055
  21. Smith, M., Koren, V., Zhang, Z., Zhang, Y., Reed, S. M., Cui, Z., Moreda, F., Cosgrove, B. A., Mizukami, N., Anderson, E. A., and DMIP 2 Participants (2012b) Results of the DMIP 2 Oklahoma experiments. Journal of Hydrology, Vol. 418-419, pp. 17-48 https://doi.org/10.1016/j.jhydrol.2011.08.056
  22. Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorroshian, S. (2003a) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, Vol. 39(8), 1201, doi:10.1029/2002WR001642
  23. Vrugt, J. A., Gupta, H. V., Bastidas, L., Bouten, W., and Sorooshian, S. (2003b) Effective and efficient algorithm for multi-objective optimization of hydrologic models. Water Resources Research, Vol. 39, No.8, 1214, doi:10.1029/2002WR001746
  24. Wi, S., Yang, Y. C. E., Steinschneider, S., Khalil, A., and Brown, C. M. (2015) Calibration Approaches for Distributed Hydrologic Models in Poorly Gaged Basins: Implication for Streamflow Projections under Climate Change. Hydrology and Earth System Sciences, Vol. 19, pp. 857-876 https://doi.org/10.5194/hess-19-857-2015
  25. Zhang, Y., Z. Zhang, S. Reed, and Koren, V. (2011) An enhanced and automated approach for deriving a priori SAC-SMA parameters from the soil survey geographic dataset. Computers & Geosciences, Vol. 37, pp. 219-231 https://doi.org/10.1016/j.cageo.2010.05.016