DOI QR코드

DOI QR Code

Ni added Si-Al Alloys with Enhanced Li+ Storage Performance for Lithium-Ion Batteries

  • Umirov, Nurzhan (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Seo, Deok-Ho (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Jung, Kyu-Nam (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research) ;
  • Kim, Hyang-Yeon (Korea Institute of Industrial Technology) ;
  • Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University)
  • Received : 2018.09.04
  • Accepted : 2018.09.29
  • Published : 2019.03.31

Abstract

Here, we report on nanocrystalline Si-Al-M (M = Fe, Cu, Ni, Zr) alloys for use as an anode for lithium-ion batteries, which were fabricated via a melt-spinning method. Based on the XRD and TEM analyses, it was found that the Si-Al-M alloys consist of nanocrystalline Si grains surrounded by an amorphous matrix phase. Among the Si-Al-M alloys with different metal composition, Ni-incorporated Si-Al-M alloy electrode retained the high discharge capacity of 2492 mAh/g and exhibited improved cyclability. The superior $Li^+$ storage performance of Si-Al-M alloy with Ni component is mainly responsible for the incorporated Ni, which induces the formation of ductile and conductive inactive matrix with crystalline Al phase, in addition to the grain size reduction of active Si phase.

Keywords

E1JTC5_2019_v10n1_82_f0001.png 이미지

Fig. 2. (a) TEM image of Si-AZ and corresponding SAED patterns obtained from the regions marked by squares. (b) EDS mapping data for the corresponding TEM image of Si-AZ.

E1JTC5_2019_v10n1_82_f0002.png 이미지

Fig. 4. Galvanostatic charge-discharge profiles for Si-Al-M alloys (a) Si-AZ, (b) Si-AZN and (c) Si-AN. (d) Cycleper formance and Coulombic efficiency as a function of cycle number for Si-Al-M alloys.

E1JTC5_2019_v10n1_82_f0003.png 이미지

Fig. 5. dQ/dV plots of Si-Al-M alloys (a) Si-AZ, (b) Si-AZN and (c) Si-AN).

E1JTC5_2019_v10n1_82_f0004.png 이미지

Fig. 1. (a) SEM images of melt-spun Si-Al-M alloy ribbons. (b) XRD patterns of Si-AZ, Si-AZN, and Si-AN.

E1JTC5_2019_v10n1_82_f0005.png 이미지

Fig. 3. EDS mapping data for (a) Si-AZN and (b) Si-AN. Low-magnification TEM images and corresponding SAED patterns for (c) Si-AZN and (d) Si-AN.

Table 1. Compositions of Si-Al-M alloy ingots prepared by the arc-melting method.

E1JTC5_2019_v10n1_82_t0001.png 이미지

References

  1. B.A. Boukamp, J. Electrochem. Soc. 1981, 128, 725. https://doi.org/10.1149/1.2127495
  2. M.N. Obrovac, L. Christensen, Electrochem. Solid-State Lett. 2004, 7, A93. https://doi.org/10.1149/1.1652421
  3. M. Green, E. Fielder, B. Scrosati, M. Wachtler, J.S. Moreno, Electrochem. Solid-State Lett. 2003, 6, A75. https://doi.org/10.1149/1.1563094
  4. C.H. Doh, M.W. Oh, B.C. Han, Asian J. Chem. 2013, 25, 5739-5743. https://doi.org/10.14233/ajchem.2013.OH78
  5. J. Li, J.R. Dahn, J. Electrochem. Soc. 2007, 154, A156. https://doi.org/10.1149/1.2409862
  6. J. Wolfenstine, J. Power Sources. 1999, 79, 111-113. https://doi.org/10.1016/S0378-7753(99)00052-X
  7. X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, ACS Nano. 2012, 6, 1522-1531. https://doi.org/10.1021/nn204476h
  8. L.-F. Cui, L. Hu, J. Wook, Y. Cui, ACS Nano. 2010, 4, 3671-3678. https://doi.org/10.1021/nn100619m
  9. Y. Yao, K. Huo, L. Hu, N. Liu, J.J. Cha, M.T. McDowell, P.K. Chu, Y. Cui, ACS Nano. 2011, 5, 8346-8351. https://doi.org/10.1021/nn2033693
  10. M.N. Obrovac, L. Christensen, D.B. Le, J.R. Dahn, J. Electrochem. Soc. 2007, 154, A849. https://doi.org/10.1149/1.2752985
  11. N. Liu, Z. Lu, J. Zhao, M.T. Mcdowell, H.W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 2014, 9, 187-192. https://doi.org/10.1038/nnano.2014.6
  12. S.D. Beattie, D. Larcher, M. Morcrette, B. Simon, J.-M. Tarascon, J. Electrochem. Soc. 2008, 155, A158. https://doi.org/10.1149/1.2817828
  13. T.D. Hatchard, J.R. Dahn, S. Trussler, M. Fleischauer, A. Bonakdarpour, J.R. Mueller-Neuhaus, K.C. Hewitt, Thin Solid Films. 2003, 443, 144-150. https://doi.org/10.1016/S0040-6090(03)01093-9
  14. T.D. Hatchard, J.M. Topple, M.D. Fleischauer, J.R. Dahn, Electrochem. Solid-State Lett. 2003, 6, A129. https://doi.org/10.1149/1.1574231
  15. H. Jung, Y.U. Kim, M.S. Sung, Y. Hwa, G. Jeong, G.B. Kim, H.J. Sohn, J. Mater. Chem. 2011, 21, 11213-11216. https://doi.org/10.1039/c1jm11020a
  16. S.-S. Suh, W.Y. Yoon, C.-G. Lee, S.-U. Kwon, J.-H. Kim, Y. Matulevich, Y.-U. Kim, Y. Park, C.-U. Jeong, Y.-Y. Chan, S.-H. Kang, J. Electrochem. Soc. 2013, 160, A751-A755. https://doi.org/10.1149/2.009306jes
  17. H.-J. Yu, K.-P. Hong, M.-S. Sung, S. Lee, K. Yoon Sheem, S.-S. Kim, ECS Electrochem. Lett. 2012, 2, A10-A13. https://doi.org/10.1149/2.011301eel
  18. M.D. Fleischauer, J.R. Dahn, J. Electrochem. Soc. 2004, 151, A1216. https://doi.org/10.1149/1.1768544
  19. M.D. Fleischauer, M.N. Obrovac, J.R. Dahn, J. Electrochem. Soc. 2006, 153, A1201. https://doi.org/10.1149/1.2194628
  20. D. V Louzguine, A. Inoue, Mater. Trans. Jim. 1997, 38, 1095-1099. https://doi.org/10.2320/matertrans1989.38.1095
  21. J.S. Kim, N. Umirov, H.-Y. Kim, S.-S. Kim, J. Electrochem. Sci. Technol. 2018, 9, 51-59. https://doi.org/10.33961/JECST.2018.9.1.51
  22. A. Inoue, Acta Mater. 2000, 48, 279-306. https://doi.org/10.1016/S1359-6454(99)00300-6
  23. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31-35. https://doi.org/10.1038/nnano.2007.411
  24. N. Umirov, D.-H. Seo, T. Kim, H.-Y. Kim, S.-S. Kim, J. Indust. Eng. Chem. 2018.
  25. V.L. Chevrier, L. Liu, D.B. Le, J. Lund, B. Molla, K. Reimer, L.J. Krause, L.D. Jensen, E. Figgemeier, K.W. Eberman, J. Electrochem. Soc. 2014, 161, A783-A791. https://doi.org/10.1149/2.066405jes