DOI QR코드

DOI QR Code

Quality Evaluation of UAV Images Using Resolution Target

해상도 타겟을 이용한 무인항공영상의 품질 평가

  • 이재원 (동아대학교 토목공학과) ;
  • 성상민 (동아대학교 토목공학과)
  • Received : 2019.03.08
  • Accepted : 2019.03.25
  • Published : 2019.03.31

Abstract

Spatial resolution is still one of the most important parameters for evaluating image quality. In this study, we propose an approach to evaluate spatial resolution and MTF(Modulation Transfer Function) using bar target and Siemens star chart as a part of quality evaluation for UAV images. To this end, images were taken with a fixed-wing eBee(Canon IXUS) at the flight height of 130m and 260m, and with a rotary-wing GD-800(SONY NEX-5N) at flight height of 130m, with a Phantom 4 pro(FC 6310) at flight height of 90m, respectively. Spatial resolution was measured on orthoimages produced from this data. Results show that the resolution measured on the Siemens star and bar target was accurately degraded in proportion to the flight height regardless of the cameras. In the words, the spatial resolution of images taken at the same altitude of 130m with the eBee(Canon IXUS) and the GD-800(SONY NEX-5N) equipped with different cameras was the same as 4.1cm, and that of the eBee(Canon IXUS) at 260m was 8.0cm. In addition, the resolution measured on the Siemens star was about 1~2cm lower than that of the bar target at every flight height. The general tendency was also found to be proportional to the flight height in the measurement of the ${\sigma}_{MTF}$ from MTF, which simultaneously represents the resolution and contrast information of the image. However, at the same altitude of 130m, the ${\sigma}_{MTF}$ of the GD-800(SONY NEX-5N) is 0.36 and the eBee(Canon IXUS) is 0.59, which shows that the GD-800(SONY NEX-5N) has better camera performance. It is expected that study results will contribute to the analysis of spatial resolution of UAV images and to improve the reliability of quality.

공간해상도는 영상품질을 평가하는 매우 중요한 파라미터들 중의 하나이다. 본 연구에서는 무인 항공영상의 품질평가 방안의 일환으로 bar target과 Siemens star 도형을 이용하여 공간해상도와 MTF(Modulation Transfer Function)를 평가하는 방안을 제시하였다. 이를 위하여 고정익 eBee(Canon IXUS)로는 비행고도 130m와 260m로 촬영하고, 회전익 GD-800(SONY NEX-5N)으로는 130m, Phantom 4 pro(FC 6310)는 90m 고도에서 각각 촬영하여 정사영상을 제작하여 공간해상도를 측정하였다. 실험결과 공간해상도는 Siemens star와 Bar target 모두에서 카메라에 관계없이 정확히 비행고도에 비례하여 낮아짐을 알 수 있었다. 즉, 서로 상이한 카메라가 탑재된 Canon IXUS(eBee)와 SONY NEX-5N(GD-800)으로 130m의 동일 고도에서 촬영한 영상의 공간해상도는 4.1cm로 동일하였으며, eBee 260m의 경우에는 공간해상도가 8.0cm이었다. 아울러 Siemens star로 측정한 해상도가 Bar target에 비하여 모든 고도에서 1~2cm 가량 낮았다. 영상의 해상도와 명암 정보를 동시에 나타내는 MTF의 ${\sigma}_{MTF}$ 측정에서도 비행고도에 비례하는 일반적인 경향을 알 수 있었다. 하지만 130m 동일고도에서 SONY NEX-5N(GD-800)의 ${\sigma}_{MTF}$ 는 0.36이고, Canon IXUS(eBee)는 0.59로 카메라 성능이 더 좋은 SONY NEX-5N(GD-800)이 우수함을 알 수 있었다. 본 연구의 결과는 무인항공영상의 공간해상도 분석과 품질의 신뢰도 향상에 기여할 것으로 기대한다.

Keywords

GRJBBB_2019_v22n1_103_f0001.png 이미지

FIGURE 1. Design of Siemens star

GRJBBB_2019_v22n1_103_f0002.png 이미지

FIGURE 2. Concept of modulation value analysis

GRJBBB_2019_v22n1_103_f0003.png 이미지

FIGURE 3. DN of image with black and white linepairs (Neumann, 2003)

GRJBBB_2019_v22n1_103_f0004.png 이미지

FIGURE 4. Design of Bar target

GRJBBB_2019_v22n1_103_f0005.png 이미지

FIGURE 6. Siemens star and Bar target in study area

GRJBBB_2019_v22n1_103_f0006.png 이미지

FIGURE 5. DN value of Bar Number

GRJBBB_2019_v22n1_103_f0007.png 이미지

FIGURE 7. MTF graph

TABLE 1. Specifications of UAVs and the cameras and Flight parameters for UAV image

GRJBBB_2019_v22n1_103_t0001.png 이미지

TABLE 2. Siemens star and Bar target appeared in orthoimages

GRJBBB_2019_v22n1_103_t0002.png 이미지

TABLE 3. Analysis of Resolution Using Siemens star

GRJBBB_2019_v22n1_103_t0003.png 이미지

TABLE 4. Spatial Resolutions Measured By Different Targets

GRJBBB_2019_v22n1_103_t0004.png 이미지

TABLE 5. σ MTF Analysis Results

GRJBBB_2019_v22n1_103_t0005.png 이미지

References

  1. Agisoft, 2018. Photoscan User Manual: Professional Edition. Ver 1.4. St. Petersburg. 118p.
  2. Honkavaara, E. 2008. Calibrating digital photogrammetric airborne imaging systems using a test field. Ph. D. Thesis. Helsinki University of Technology, Helsinki, Finland. 62p.
  3. Jiang W., Y. Li., Y. Liang., and Y. Zeng. 2010. Research on quality index system of digital aerial photography results. Computer and Computing Technologies in Agriculture IV. pp. 381-391.
  4. Lee, J.O. and S.M. Sung. 2018. Assessment of positioning accuracy of UAV photogrammetry based on RTK-GPS. Journal of the Korea Academia-Industrial. 19(4):63-68.
  5. Lee, T.Y. 2012. Spatial resolution analysis of aerial digital camera. Ph.D. thesis. Dong-A University, Busan, Korea. 153p.
  6. Liang Y., Y. Zeng., W. Jiang. and X. Wang. 2012. Research on automatic inspection methods of image quality of digital aerial photography results. Computer and Computing Technologies in Agriculture V. pp.320-331.
  7. Linda, S. and S. George. 2000. Computer Vision. Prentice Hall. pp.97-105.
  8. McAndrew, A. 2004. Introduction to digital image processing with MATLAB. CENGAGE Learning Publishing Co., pp.241-249.(김태호, 권영만, 전명권 옮김. 2011. 매트랩을 이용한 영상처리의 기초. pp.241-249. 한티미디어. 서울)
  9. Neuman, A. 2003. Methods to measure resolution of digital cameras. Master Thesis. University of Applied Sciences, Cologne, Germarny. 5p.
  10. NGII. 2016. Airborne Photogrammetry Work Regulations, National Geographic Information Institute. Suwon. p.55.
  11. Otsu, N. 1979. A Threshold selection method from gray-level histograms, IEEE Transaction on Systems. pp. 62-66.

Cited by

  1. 효율적인 농업면적 조사를 위한 무인항공기와 GIS의 활용 vol.10, pp.12, 2020, https://doi.org/10.22156/cs4smb.2020.10.12.201
  2. 정상운영기간동안의 KOMPSAT-3A호 주요 영상 품질 인자별 특성 vol.36, pp.6, 2020, https://doi.org/10.7780/kjrs.2020.36.6.2.2
  3. 유·무인 항공영상을 이용한 심층학습 기반 녹피율 산정 vol.37, pp.6, 2019, https://doi.org/10.7780/kjrs.2021.37.6.1.22