DOI QR코드

DOI QR Code

A Study on the NOx Reduction According to the Space Velocity Variation and Binder Content of Metal foam SCR Catalyst for Cogeneration Power Plant Application

열병합발전소 적용을 위한 Metal foam SCR촉매의 공간속도와 바인더 함량에 따른 NOx 저감에 관한 연구

  • Na, Woo-Jin (Department of Chemical Engineering, Hanseo University) ;
  • Park, Hea-Kyung (Department of Chemical Engineering, Hanseo University)
  • Received : 2019.01.07
  • Accepted : 2019.03.29
  • Published : 2019.03.31

Abstract

To develop a high performance SCR catalyst which has better specific surface area, lightness of weight and fast temperature response than those of existing commercial SCR catalyst, metal foam type SCR catalysts were prepared by washcoating with vanadium, tungsten and binder. The de-NOx performance test of the prepared catalysts was carried out on atmospheric micro-test unit at lab. scale according to space velocity variation and temperature change, and the characteristics of them were analyzed by Porosimeter, SEM(scanning electron microscope), EDX(energy dispersive x-ray spectrometer), ICP(inductively coupled plasma) and Stereomicroscope. The NOx reduction performance decreased as the space velocity increased and was found to be the best at 3.5 wt.% contents of the vanadium and tungsten. It was found that the larger amount of binder was added, the worse the NOx reduction performance was, which was considered to be that the number of active sites of the prepared catalyst surface was occupied by the binder. We found that the amount of binder to be added to prepare the catalyst should be properly controlled by the condition of coated catalyt surface.

본 연구에서는 기존 상용 SCR 촉매보다 비표면적, 경량성 및 온도 응답성이 우수한 SCR 촉매의 개발을 목적으로 바나듐과 텅스텐의 함량과 바인더의 첨가량을 달리하여 Metal foam 형태의 지지체에 코팅하여 SCR 촉매를 제조한 후, 실험실 규모의 마이크로 상압반응기상에서 공간속도별로 NOx 저감 성능을 측정하였다. 촉매의 특성은 Porosimeter, SEM(scanning electron microscope), EDX(energy dispersive x-ray spectrometer) 및 ICP(inductively coupled plasma), 실체현미경(Stereomicroscope) 기기를 이용하여 분석하였다. 연구 결과 NOx 저감 성능은 공간속도가 증가할수록 감소하였고, 바나듐과 텅스텐의 함량이 3.5 wt.% 일 때 가장 우수한 것으로 확인하였다. 또한, 바인더 첨가량이 많을수록 NOx 저감 성능이 감소하는 것으로 나타났는데, 이는 촉매 표면상의 활성점 수가 바인더에 의해 점유되어 감소된 것에 따른 것으로 판단된다. 또한 표면 코팅 상태 분석을 통하여 바인더의 첨가량이 적절히 조절 되어야 함을 알 수 있었다.

Keywords

HGOHBI_2019_v36n1_153_f0001.png 이미지

Fig. 1. Schematic diagram of catalyst performance test unit.

HGOHBI_2019_v36n1_153_f0002.png 이미지

Fig. 2. Prepared metal foam catalysts.

HGOHBI_2019_v36n1_153_f0003.png 이미지

Fig. 3. Conversion of NOx at different V2O5 & WO3 amounts of prepared catalyst. (Binder : 10wt.%, S.V : 30,000hr-1)

HGOHBI_2019_v36n1_153_f0004.png 이미지

Fig. 4. Conversion of NOx at different V2O5 & WO3 amounts of prepared catalyst. (Binder : 10wt.%, S.V : 50,000hr-1)

HGOHBI_2019_v36n1_153_f0005.png 이미지

Fig. 5. Conversion of NOx at different V2O5 & WO3 amounts of prepared catalyst. (Binder : 10wt.%, S.V : 70,000hr-1)

HGOHBI_2019_v36n1_153_f0006.png 이미지

Fig. 6. Conversion of NOx at different V2O5 & WO3 amounts of prepared catalyst. (Binder : 15wt.%, S.V : 30,000hr-1)

HGOHBI_2019_v36n1_153_f0007.png 이미지

Fig. 7. Conversion of NOx at different V2O5 & WO3 amounts of prepared catalyst. (Binder : 15wt.%, S.V : 50,000hr-1)

HGOHBI_2019_v36n1_153_f0008.png 이미지

Fig. 8. Conversion of NOx at different V2O5 & WO3 amounts of prepared catalyst. (Binder : 15wt.%, S.V : 70,000hr-1)

HGOHBI_2019_v36n1_153_f0009.png 이미지

Fig. 9. Conversion of NOx at different V2O5 & WO3 amounts of prepared catalyst. (Binder : 20wt.%, S.V : 30,000hr-1)

HGOHBI_2019_v36n1_153_f0010.png 이미지

Fig. 10. Conversion of NOx at different V2O5 & WO3 amounts of prepared catalyst. (Binder : 20wt.%, S.V : 50,000hr-1)

HGOHBI_2019_v36n1_153_f0011.png 이미지

Fig. 11. Conversion of NOx at different V2O5 & WO3 amounts of prepared catalyst. (Binder : 20wt.%, S.V : 70,000hr-1)

HGOHBI_2019_v36n1_153_f0012.png 이미지

Fig. 12. Conversion of NOx at different binder amounts of prepared catalyst. (V2O5: 3.5 wt.%, WO3: 3.5 wt.%, S.V : 30,000hr-1)

HGOHBI_2019_v36n1_153_f0013.png 이미지

Fig. 13. Conversion of NOx at different binder amount of prepared catalyst. (V2O5: 3.5 wt.%, WO3: 3.5 wt.%, S.V : 50,000hr-1)

HGOHBI_2019_v36n1_153_f0014.png 이미지

Fig. 14. Conversion of NOx at different binder amounts of prepared catalyst. (V2O5: 3.5 wt.%, WO3: 3.5 wt.%, S.V : 70,000hr-1)

HGOHBI_2019_v36n1_153_f0015.png 이미지

Fig. 15. SEM analysis results of the prepared catalysts.

HGOHBI_2019_v36n1_153_f0016.png 이미지

Fig. 16. Stereomicroscope analysis results of the prepared catalysts.(×60)

Table 1. Notation of processing condition

HGOHBI_2019_v36n1_153_t0001.png 이미지

Table 2. Experimental conditions of NOx reduction measurement

HGOHBI_2019_v36n1_153_t0002.png 이미지

Table 3. Porosimeter analysis results of the prepared catalyst

HGOHBI_2019_v36n1_153_t0003.png 이미지

Table 4. EDX analysis results of the prepared catalyst

HGOHBI_2019_v36n1_153_t0004.png 이미지

Table 5. ICP analysis results of the prepared catalyst

HGOHBI_2019_v36n1_153_t0005.png 이미지

References

  1. S. J. Lee, S. C. Hong, "Deactivation and Regeneration of a Used De-NOx SCR Catalyst for Wastes Incinerator," J. Korean Ind. Eng. Chem, Vol.19, No.3 pp. 259-263, (2008). https://doi.org/10.1007/s11814-008-0046-x
  2. J. B. Lee, D. W. Kim, C. Y. Lee, "Deactivation of SCR Catalysts Applied in Power Plants," Appl. Chem. Eng, Vol.21, No.1 pp. 104-110, (2010).
  3. B. K. Shin, J. H. Kim, S. H. Yoon, H. S. Lee, D. W. Shin, W. S. Min, "Preparation and Thermal Degradation Behavior of $WO_3-TiO_2$ Catalyst for Selective Catalytic Reduction of NOx," Kor. J. Met. Mater, Vol.49, No.8 pp. 596-600, (2011). https://doi.org/10.3365/KJMM.2011.49.8.596
  4. M. A. L. Vargas, M. Casanova, A. Trovarelli, G. Busca, "An IR Study of Thermally Stable $V_2O_5-WO_3/TiO_2$ SCR Catalysts Modified with Silica and Rare-earths (Ce, Tb, Er)," Appl. Catal. B : Environ, Vol.75, pp. 303-304, (2007). https://doi.org/10.1016/j.apcatb.2007.04.022
  5. M. Kobayashi, K. Miyoshi, "$WO_3-TiO_2$ Monolithic Catalysts for High Temperature SCR of NO by $NH_3$ : Influence of Preparation Method on Structural and Physico-Chemical Properties, Activity and durability," Appl. Catal. B : Environ, Vol.72, pp. 253-261, (2007). https://doi.org/10.1016/j.apcatb.2006.11.007
  6. H. Bosch, F. Janssen, "Catalytic Reduction of Nitrogen Oxides-a Review on the Fundamentals and Technology," Catal. Today, Vol.2, pp. 369-532, (1988). https://doi.org/10.1016/0920-5861(88)80002-6
  7. S. K. Ryi, J. S. Park, S. H. Choi, S. H. Cho, S. H. Kim, "Novel micro fuel processor for PEMFCs with heat generation by catalytic combustion," Chemical Engineering Journal, Vol.113, No.1 pp. 47-53, (2005). https://doi.org/10.1016/j.cej.2005.08.008
  8. L. Lietti, "Reactivity of $V_2O_5-WO_3/TiO_2$ de-NOx Catalysts by Transient Methods," Appl. Catal. B : Environ, Vol.10, pp. 281-297, (1996). https://doi.org/10.1016/S0926-3373(97)80001-X
  9. R. Burch, P. J. Millington, "Selective Reduction of Nitrogen Oxide by Hydrocarbons under Lean-burn Conditions Using Supported Platinum Group Metal Catalysts," Catal. Today, Vol.26, pp. 185-206, (1995). https://doi.org/10.1016/0920-5861(95)00136-4
  10. M. Inomata, K. Mori, A. Miyamoto, T. Ui, Y. Murakami, "Structures of Supported Vanadium Oxide Catalysts. 1. Vanadium (V) Oxide/Titanium Dioxide (anatase), Vanadium (V) Oxide/titanium Dioxide (rutile), and Vanadium (V) Oxide/Titanium Dioxide (Mixture of Anatase with Rutile)," J. Phys. Chem, Vol.87, No.5 pp. 754-761, (1983). https://doi.org/10.1021/j100228a013
  11. B. J. Jang, "The Research of Reaction Characteristic and the Improvement of Efficiency of $TiO_2$ Catalyst for SCR in High Temperature," M.S. Thesis, Kyonggi University, Suwon, (2009).
  12. S. M. Lee, "A Study on the Reaction Characteristics and Mechanism of the SCR over $W/TiO_2$ Catalyst at High Temperature," M.S. Thesis, Kyonggi University, Suwon, (2010).
  13. S. S. Kim, S. C. Hong, "The Emission of $NO_2$ and $NH_3$ in Selective Catalytic Reduction over Manganese Oxide with NH3 at Low Temperature," J. Korean Ind. Eng. Chem, Vol.18, No.3 pp. 225-261, (2007).
  14. C. M. Kim, G. B. Cho, D. S. Kim, Y. I. Jeong, K. O. Oh, B. S. Shin, M. Y. Kim, "A Study on the NOx Reduction Performance of a Metal foam SCR Catalyst," KSAE 2009 Annaual Conference, pp. 701-706, (2009).
  15. J. K. Oh, J. M. Lee, E. S. Lee, M. H. Park, K. O. Oh, B. H. Lee, "A Study on Prediction of Pressure Drop of Metal Foam," KSAE 2009 Annual Conference, pp. 782-786, (2009).
  16. J. Kryca, M. Iwaniszyn, M. Piatek, P. J. Jodlowski, R. Jedrzejezyk, R. Pedrys, A. Wrobel, J. Lojewska, A. Kolodziej, "Structured Foam Reactor with CuSSZ-13Catalyst for SCR of NOx with Ammonia," Top Catal, Vol.59, pp. 887-894, (2016). https://doi.org/10.1007/s11244-016-0564-4
  17. Y. Liu, J. Xu, H. Li, S. Cai, H. Hu, C. Fang, L. Shi, D. Zhang, "Rational Design and in situ Fabrication of $MnO_2@NiCo_2O_4$ Nanowire Arrays on Ni Foam as High-Performance Monolith de-NOx Catalysts," J. Mater. Chem. A, Vol.3, pp. 11543-11553, (2015). https://doi.org/10.1039/C5TA01212K
  18. L. C. Almeida, F. J. Echave, O. Sanz, M. A. Centeno, M. A. G. Arzamendi, L. M. Gandia, E. F. Sousa-Aguiar, J. A. Odriozola, M. Montes, "Fischer-Tropsch Synthesis in MicroHannels," Chem. Eng. J, Vol.167, pp. 536-544, (2011). https://doi.org/10.1016/j.cej.2010.09.091
  19. A. Montebelli, C. G. Visconit, G. Groppi, E. Tronconi, C. Cristiani, C. Ferreiram and S. Kohler, "Method for the Catalytic Activation of Metallic Structured Substrates," Catal. Sci. Technol, Vol.4, pp. 2846-2870, (2014). https://doi.org/10.1039/C4CY00179F
  20. S. Katheria, G. Deo, D. Kunzru, "Washcoating of Ni/$MgAl_2O_4$ catalyst on FeCralloy Monoliths for Steam Reforming of Methane," Energy Fuels, Vol.31, pp. 3143-3153, (2014).
  21. L. A. Truter, P. R. Makgwane, B. Zeelie, S. Roberts, W. Bohringer, J. C. Q. Fletcher "Washcoating of HZSM-5 Zeolite onto Steel Microreactor Plates - Filling theVoid Space between Zeolite Crystallite Agglomerates Particles," Chem. Eng. J, Vol.257, pp. 148-158, (2014). https://doi.org/10.1016/j.cej.2014.07.047