DOI QR코드

DOI QR Code

Supercritical CO2 Dyeing and Finishing Technology - A Review

초임계 이산화탄소 염색 및 가공 기술

  • Lee, Gyoyoung (Department of Fiber System Engineering, Yeungnam University) ;
  • Chae, Juwon (Department of Fiber System Engineering, Yeungnam University) ;
  • Lee, Sang Oh (Department of Clothing and Fashion, Yeungnam University) ;
  • Kim, Sam Soo (Department of Fiber System Engineering, Yeungnam University) ;
  • Lee, Jaewoong (Department of Fiber System Engineering, Yeungnam University)
  • 이교영 (영남대학교 파이버시스템공학과) ;
  • 채주원 (영남대학교 파이버시스템공학과) ;
  • 이상오 (영남대학교 의류패션학과) ;
  • 김삼수 (영남대학교 파이버시스템공학과) ;
  • 이재웅 (영남대학교 파이버시스템공학과)
  • Received : 2018.11.08
  • Accepted : 2019.01.09
  • Published : 2019.03.27

Abstract

With evolution in the production environment of the textile industry, the need for non-water-based dyeing technologies and eco-friendly process facilities in the dyeing and processing stages has increased. In recent years, supercritical fluid dyes have been developed and commercialized in Europe, centering on this demand. However, so far, such dyes have been mainly applied in the processing of PET fibers. Basic research has mainly involved investigation of dyeing by supercritical carbon dioxide or solubility of such dyes, and more in-depth research should be continuously carried out. In this review, we describe the types and characteristics of supercritical fluids that exhibit specific properties at pressures and temperatures over the critical point. In addition, the state of the art in the dyeing and processing technology using supercritical fluids and associated, processing problems, environmental regulation, and wastewater treatment issues are described in detail. We hope this review can contribute to the supercritical fluid technology being further developed as an environment friendly dyeing processing method. Furthermore, we expect that the technique can be used as a means of ensuring different, high-quality dyed products.

Keywords

OSGGBT_2019_v31n1_48_f0001.png 이미지

Figure 1. Swellability and dynamics of equilibration of a polymer exposed to CO2 with time during pressurization and depressurization7).

OSGGBT_2019_v31n1_48_f0002.png 이미지

Figure 2. Supercritical methanol trans esterification system.

OSGGBT_2019_v31n1_48_f0003.png 이미지

Figure 3. Relationship between reaction temperature and pressure inside a bath type reaction vessel. The shadowed zone is in supercritical state of methanol32).

OSGGBT_2019_v31n1_48_f0004.png 이미지

Figure 4. Schematic diagram illustration of the processes of supercritical pretreatment(impregnation and thermal treatment), decompression, and electroless deposition of copper on the Kevlar fiber by magnet stirring or ultrasonic irradiation.

OSGGBT_2019_v31n1_48_f0005.png 이미지

Figure 5. Qualitative representation of the solubility behavior of disperses dyes in SC-CO281).

OSGGBT_2019_v31n1_48_f0006.png 이미지

Figure 6. Difference in water dyeing by temperature (0.3% o.w.f.).

OSGGBT_2019_v31n1_48_f0007.png 이미지

Figure 7. Structure of C.I. Disperse Red 60 85).

OSGGBT_2019_v31n1_48_f0008.png 이미지

Figure 8. Solubility of C. I. Disperse Red 60, y, in SCCO2 as a function of pressure42).

Table 1. Critical points of each solvent12)

OSGGBT_2019_v31n1_48_t0001.png 이미지

Table 2. Effect of the SC-CO2 pretreatment upon lignin removal of ramie fibers66)

OSGGBT_2019_v31n1_48_t0002.png 이미지

Table 3. Advantages and disadvantages of high pressure phase equilibrium methods1)

OSGGBT_2019_v31n1_48_t0003.png 이미지

Table 4. Relation of solubility, y, to the dye uptake of C. I. Disperse Red 60 in SC-CO2 at different pressures, P74)

OSGGBT_2019_v31n1_48_t0004.png 이미지

References

  1. T. Kim, G. Park, W. Kong, and Y. Lee, Supercritical Dyeing Technology, Clean Technology, 24(1), 1(2018). https://doi.org/10.7464/KSCT.2018.24.1.001
  2. J. Lee, Review : Present Status of Green Chemistry, J. of the KIMST, 14(2), 246(2011).
  3. H. Zheng, J. Zhang, J. Yan, and L. Zheng, An Industrial Scale Multiple Supercritical Carbon Dioxide Apparatus and its Eco-friendly Dyeing Production, $CO_2$ Utilizaton, 6(3), 272(2016).
  4. Y. Lee, Supercritical Fluid Dyeing Technology, Clean Technology, 55(7), 1(2015).
  5. M. Liu,J. Hong, Z. Hao, J. Wu, X. Xiong, and L. Zheng, Eco-friendly Curcumin-based Dyes for Supercritical Carbon Dioxide Natural Fabric Dyeing, Cleaner Production, 187(1), 1262(2018).
  6. C. Koo, S. Yu, B. Baek, H. Cho, Y. Lee, and S. Hong, Recycling Technology of Crosslinked-Polymers Using Supercritical Fluid, Elastomers and Composites, 47(2), 111(2012). https://doi.org/10.7473/EC.2012.47.2.111
  7. J. K. Bal, T. Beuvier, M. S. Chebil, G. Vignaud, Y. Grohens, M. K. Sanyal, and M. K. Gibaud, Relaxation of Ultrathin Polystyrene Films Hyperswollen in Supercritical Carbon Dioxide, Macromolecules, 47(24), 8738 (2014). https://doi.org/10.1021/ma501281t
  8. C. Choi and J. Song, Swelling and Mechanical Properties of Shale and Sandstone after Reacted with Supercritical $CO_2$, Proceedings of the ISRM Regional Symposium, Seoul, Vol.22(4), pp.266-275, 2012.
  9. G. Kim, Supercritical Fluid Extraction Technology for Food Industry, Technology for Food Industry, Food Industry and Nutrition, 17(1), 17(2012).
  10. E. Lee, K. Chang, Y. Kwon, and E. Lee, Optimization of the Alliins Extraction in the Garlic by Supercritical Carbon Dioxide, Food Engineering Progress, 1, 149 (1997).
  11. G. Musgrove, A. M. Rimpel, and J. C. Wilkes, Fundamentals of Supercritical $CO_2$, ASME Turbo Expo, Copenhagen, GT2012, p.70181, 2012.
  12. Y. Cho, H. Kim, J. Kim, S. Lee, W. Kim, J. Ryu, and G. Lim, Extraction of Glabridin from Licorice Using Supercritical Carbon Dioxide, KSBB, 19(6), 427(2004).
  13. Y. Ju, M. Lee, M. Woo, and S. Byun, The Current Status of Supercritical Fluid Extraction Technology and Industrial Applications, Korean J. Biotechnol. Bioeng., 20(5), 329(2005).
  14. H. Lim, B. Choi, M. Park, S. Hwang, J. Park, J. Seo, J. Bang, E. Yoon, B. Kim, and D. Lee, Development of Power Turbine for Supercritical $CO_2$ Power System, Proceeding of Korea Supercritical Tech., Korea, pp.177-178, 2017.
  15. G. Genov, Physical Processes of the $CO_2$ Hydrate Formation and Decomposition at Conditions Relevant to Mars, Ph.D. Thesis, Georg August University, 2005.
  16. S. Yoon and H. Byun, Application of Separation Technology and Supercritical Fluids Process, Clean Technology, 18(2), 123(2012). https://doi.org/10.7464/ksct.2012.18.2.123
  17. S. Kim, M. Lee, S. Back, and B. Chun, Extraction and Identification of Volatile Isothiocyanates from Wasabi using Supercritical Carbon Dioxide, Korean Society for Biotechnology and Bioengineering, 22(3), 174(2007).
  18. U. Min, M. Ark, J. Jeon, B. Choi, and H. Bae, Dye Uptake of Polyester Fiber in Supercritical Fluids, Korean Chemical Engineering Research, 42(2), 213(2004).
  19. J. Choi, H. Lim, K. Han, H. Kang, and D. Choi, Characterization of Degradation Features and Degradative Products of Poplar Wood(Populus alba${\times}$glandulosa) by Flow Type-Supercritical Water Treatment, J. Kor. For. En., 24(1), 39(2015).
  20. J. Walther, Mineral Solubilitiesin Supercritical $H_2O$ Solutions, Pure and Applied Chemistry, Pure and Appl. Chem, 58(12), 1585(1986). https://doi.org/10.1351/pac198658121585
  21. M. Fr and H. Ma, Biodiesel Production: A Review, Bioresour Technology, 70, 1(1999). https://doi.org/10.1016/S0960-8524(99)00025-5
  22. M. Garcia, A. Gonzalo, S. Luis, J. Arauzo, and C. Simoes, Methanolysis and Ethanolysis of Animal Fats: a Comparative Study of the Influence of Alcohols, Chemical Industry, 17(1), 91(2011).
  23. K. Harvind, R. M. Tapaswy, P. D. Patil, S. Ponnusamy, C. Peter, T. Schaub, and D. Shuguang, Direct Conversion of Wet Algae to Fatty Acid Ethyl Esters under Supercritical Ethanol Conditions, J. Fuel, 115, 720(2014). https://doi.org/10.1016/j.fuel.2013.07.090
  24. D. Prafulla, P. V. Gude, M. Aravind, D. Shuguang, P. Cooke, M. Stuart, I. Rhodes, P. Lammers, and N. Nagamany, Optimization of Direct Conversion of Wet Algae to Biodiesel under Supercritical Methanol Conditions, Bioresource Technology, 102(1), 118(2011). https://doi.org/10.1016/j.biortech.2010.06.031
  25. A. Demirbas, Biodiesel from Vegetable Oils via Transesterification in Supercritical Methanol, Energy Conversion and Management, 43(17), 2349(2002). https://doi.org/10.1016/S0196-8904(01)00170-4
  26. M. N. Varma and G. Madras, Synthesis of Biodiesel from Castor Oil and Linseed Oil in Supercritical Fluids, Industrial and Engineering Chemistry Research, 46(1), 1(2007). https://doi.org/10.1021/ie0607043
  27. S. Saka and D. Kusdiana, Biodiesel Fuelfrom Rapeseed Oil as Prepared in Supercritical Methanol, J. Fuel, 80(2), 225(2001). https://doi.org/10.1016/S0016-2361(00)00083-1
  28. N. Martini and S. Schell, Plant Oils as Fuels: "Present State of Science and Future Developments", Springer Verlag, Potsdam, pp.16-18, 2012.
  29. C. Xu and T. Etcheverry, Hydro-liquefaction of Woody Biomass in Sub- and Supercritical Ethanol with Iron-based Catalysts, Fuel, 87(3), 335(2008). https://doi.org/10.1016/j.fuel.2007.05.013
  30. G. Knothe, Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters, Fuel Process Technology, 86(10), 1059(2005). https://doi.org/10.1016/j.fuproc.2004.11.002
  31. H. Joshi, B. Moser, J. Toler, and T. Walker, Preparation and Fuel Properties of Mixtures of Soybean Oil Methyl and Ethyl Esters, Biomass Bioenergy, 34(1), 14(2010). https://doi.org/10.1016/j.biombioe.2009.09.006
  32. D. Kusdiana and S. Saka, Kinetics of Transesterification in Rapeseed Oil to Biodiesel Fuel as Treated in Supercritical Methano, Fuel, 81(5), 693(2001). https://doi.org/10.1016/S0016-2361(00)00140-X
  33. G. An, W. Ma, Z. Sun, Z. Liu, B. Han, and S. Miao, Preparation of Titania/carbon Nanotube Composites using Supercritical Ethanol and their Photocatalytic Activity for Phenol Degradation under Visible Light Irradiation, Carbon, 45(9), 1795(2007). https://doi.org/10.1016/j.carbon.2007.04.034
  34. E. Bach, E. Cleve, and E. Schollmeyer, Past, Present and Future of Supercritical Fluid Dyeing Technology-an Overview, Rev. Prog. Color, 32(1), 88(2002). https://doi.org/10.1111/j.1478-4408.2002.tb00253.x
  35. K. Poulakis, M. Spee, G. Schneider, D. Knittel, H. Buschmann, and E. Schollmeyer, Dyeing of Polyester Fibers in Supercritical Carbon Dioxide, Chemiefasern Textilind, 41, 534(1991).
  36. D. Knittel, W. Saus, and E. Schollmeyer, Dyeing of Textiles in Supercritical Carbon Dioxide, Textile Research J., 63(3), 135(1993). https://doi.org/10.1177/004051759306300302
  37. W. Saus, D. Knittel, and E. Schollmeer, Application of Supercritical Carbon Dioxide in Finishing Processes, Textile Praxis Int., 84(4), 534(1993).
  38. C. Tsai, H. Lin, and M. Lee, Fluid Phase Equilibria, Solubility of Disperse Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent, Fluid Phase Equilibria, 260(2), 287(2007). https://doi.org/10.1016/j.fluid.2007.07.070
  39. J. Schnitzler, R. Eggers, and J. Mass, Transfer in Polymersin a Supercritical $CO_2$-Atmosphere, Supercrit, Fluids, 16(1), 81(1999).
  40. D. Bartle, A. Clifford, A. Jafar, and F. Shilstone, Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide, J. of Physical and Chemical Reference Data, 20(4), 713(1996). https://doi.org/10.1063/1.555893
  41. C. Kirby and M. McHugh, Phase Behavior of Polymers in Supercritical Fluid Solvents, Chem. Rev., 99(2), 565 (1999). https://doi.org/10.1021/cr970046j
  42. B. Ping and J. Dai, Relationships between the Solubility of C. I. Disperse Red 60 and Uptake on PET in Supercritical $CO_2$, J. Chem. Eng. Data, 50(3), 838(2005). https://doi.org/10.1021/je0496847
  43. N. Brantley, S. Kazarian, and C. Eckert, In situ Spectroscopy of Polymers Subjected to Supercritical $CO_2$: Plasticization and Dye Impregnation, J. Appl. Polym. Sci., 51(4), 491(2000).
  44. H. Lin, C. Ho, M. Lee, and J. Supercrit, Solubility of Disperse Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent, Fluid Phase Equilibria, 260(2), 287(2004). https://doi.org/10.1016/j.fluid.2007.07.070
  45. S. Park, D. I. Tuma, S. Kim, Y. Lee, and J. Shim, Sorption of C. I. Disperse Red 60 in Polystyrene and PMMA Films and Polyester and Nylon 6 Textilesin the Presence of Supercritical Carbon Dioxide, Korean J.Chem. Eng., 27(1), 299(2010). https://doi.org/10.1007/s11814-010-0098-6
  46. E. Bach, E. Cleve, E. Schollmeyer, M. Bork, and P. Korner, The Dyeing of Natural Gibres with Reactive Disperse Dyes in Supercritical Carbon Dioxide, Dyes and Pigments, 56(1), 27(2003). https://doi.org/10.1016/S0143-7208(02)00108-0
  47. A. Ferri, M. Banchero, L. Manna, and S. Sicardi, Impregnation of PVP Microparticles with Ketoprofen in the Presence of Supercritical $CO_2$, J. Supercrit. Fluids, 42(3), 378(2006). https://doi.org/10.1016/j.supflu.2006.12.002
  48. M. Banchero, Supercritical Fluid Dyeing of Synthetic and Natural Textiles - A Review, Color. Technol., 129(1), 2(2013). https://doi.org/10.1111/cote.12005
  49. S. Liao, Dyeing Nylon-6,6 with Some Hydrophobic Reactive Dyes by Supercritical Processing, J. Polym. Res., 11(4), 285(2005). https://doi.org/10.1007/s10965-005-4046-9
  50. M. Kraan, M. Fernandez, G. Woerlee, W. T. Veugelers, and G. Witkamp, Dyeing of Natural and Synthetic Textiles in Supercritical Carbon Dioxide with Disperse Reactive Dyes, J. Supercrit. Fluids, 40(3), 470(2007). https://doi.org/10.1016/j.supflu.2006.07.019
  51. J. Long, Y. Ma, and J. Zhao, Investigations on the Level Dyeing of Fabrics in Supercritical Carbon Dioxide, J. Supercritical Fluids, 57(1), 80(2011). https://doi.org/10.1016/j.supflu.2011.02.007
  52. M. Kraan, Process and Equipment Development for Textile Dyeing in Supercritical Carbon Dioxide, Ph.D. Thesis, Delft University of Technology, 2005.
  53. A. Hou, B. Chen, J. Dai, and K. Zhang, Using Supercritical Carbon Dioxide as Solvent to Replace Water in Polyethylene Terephthalate(PET) Fabric Dyeing Procedures, J. Clean. Prod., 18(10-11), 1009(2010). https://doi.org/10.1016/j.jclepro.2010.03.001
  54. C. Tsai, H. Lin, and M. Lee, Solubility of C. I. Disperse Violet 1 in Supercritical Carbon Dioxide with or without Cosolvent, J. of Chemical and Engineering Data, 53(9), 2163(2008). https://doi.org/10.1021/je8003673
  55. G. Woerlee, Dry-cleaning with High-pressure Carbon Dioxide-the Influence of Mechanical Action on Washing-results, J. of Supercritical Fluids, 27(1), 97(2003). https://doi.org/10.1016/S0896-8446(02)00212-7
  56. G. Huang, Y. Xing, and J. Dai, Proceeding International Conference Computer Distributed Control and Intelligent Environmental Monitoring, Changsa, pp.48-51, 2011.
  57. P. Michel, Supercritical Fluid Applications: Industrial Developments and Economic Issues, Ind. Eng. Chem. Res., 39(12), 4531(2000). https://doi.org/10.1021/ie000211c
  58. G. Montero, D. Hinks, and J. Hooker, Reducing Problems of Cyclic Trimer Deposits in Supercritical Carbon Dioxide Polyester Dyeing Machinery, J. Supercrit. Fluids, 26(1), 47(2003). https://doi.org/10.1016/S0896-8446(02)00187-0
  59. E. Bach, E. Cleve, E. Schollmeyer, P. Nunnerich, and H. Dierkes, Experience with the Uhde $CO_2$-Dyeing Plant on a Technical Scale Part 3: Quality of Polyester Dyed in Supercritical Carbon Dioxide, Melliand International, 10(1), 66(2004).
  60. A. Schmidt, E. Bach, and E. Schollmeyer, The Dyeing of Natural Fibres with Reactive Disperse Dyesin Supercritical Carbon Dioxide, Dyes and Pigments, 56(1), 27(2003). https://doi.org/10.1016/S0143-7208(02)00108-0
  61. F. Bruhlmann, M. Leupin, K. Erismann, A. Fiechter, and J. Biotechnol, Enzymatic Degumming of Ramie Bast Fibers, J. Biotechnology, 76(1), 43(2000). https://doi.org/10.1016/S0168-1656(99)00175-3
  62. L. Zhou, Y. K. W.C. Yuen, and X. Zhou, Effect of Mercerisation and Crosslinking on the Dyeing Properties of Ramie Fabric, Coloration Technology, 119(3), 170 (2003). https://doi.org/10.1111/j.1478-4408.2003.tb00168.x
  63. K. Hirogaki, I. Tabata, K. Hisada, and T. Hori, An Investigation of the Morphological Changes in Poly(ethylene terephthalate) Fiber Treated with Supercritical Carbon Dioxide under Various Conditions, J. of Supercritical Fluids, 38(3), 399(2006). https://doi.org/10.1016/j.supflu.2005.12.006
  64. E. Kim and E. Csiszaar, The Pretreatment of Ramie Fiber Material with Supercritical $CO_2$ Fluid, J. of Natural Fibers, 2(2005), 39(2012).
  65. L. Zhou, K. Yeung, and W. Yuen, Effect of NaOH Mercerization on the Crosslinking of Ramie Yarn Using 1,2,3,4-Butanetetracarboxylic Acid, Textile Research J., 72(6), 531(2002). https://doi.org/10.1177/004051750207200612
  66. H. Zheng,R. Zhang, X. Zhao, and T. Hori, The Pretreatment of Ramie Fiber Material with Supercritical $CO_2$, Applied Mechanics and Materials, 236-237, 139(2012). https://doi.org/10.4028/www.scientific.net/AMM.236-237.139
  67. H. Adachi, K. Taki, S. Nagamine, A. Yusa, and M. Ohshima, Supercritical Carbon Dioxide Assisted Ectroless Plating on Thermoplastic Polymers, J. of Supercritical Fluids, 49(2), 265(2009). https://doi.org/10.1016/j.supflu.2008.12.010
  68. W. Oh, J. Kim, and H. Kim, Improved Adhesion Property and Electromagnetic Interference Shielding Effectiveness of Electroless Cu-plated Layer on Poly(ethylene terephthalate) by Plasma Treatment, J. of Applied Polymer Science, 84(7), 1369(2002). https://doi.org/10.1002/app.10272
  69. T. Siwach and O. Masahiro, Supercritical Carbon Dioxide-assisted Electroless Nickel Plating on Polypropylene-The Effect of Copolymer Blend Morphology on metal-Polymer Adhesion, J. of Supercritical Fluids, 85, 123 (2014). https://doi.org/10.1016/j.supflu.2013.11.012
  70. X. Zhao, H. Kazumasa, T. Isao, S. Okubayashi, and T. Hori, A New Method of Producing Conductive Aramid Fibers using Supercritical Carbon Dioxide, Surface and Coatings Technology, 201(3-4), 628(2005). https://doi.org/10.1016/j.surfcoat.2005.12.021
  71. I. Andrew, Cooper, Polymer Synthesis and Processing using Supercritical Carbon Dioxide, J. of Materials Chemistry, 10(2), 207(2000). https://doi.org/10.1039/a906486i
  72. M. Valcarcel, M. Lopez, L. Arce,J. Garrido, and A. Talanta, Selective Extraction of Astaxanthin from Crustaceans by Use of Supercritical Carbon Dioxide, Talanta, 64(3), 726(2004). https://doi.org/10.1016/j.talanta.2004.03.048
  73. D. Yu, S. Mu, L. Liu, and W. Wang, Preparation of Electroless Silver Plating on Aramid Fiber with Good Conductivity and Adhesion Strength, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 53(2015). https://doi.org/10.1016/j.colsurfa.2015.07.021
  74. G. Montero, C. Smith, W. Hendrix, and D. Butcher, Supercritical Fluid Technology in Textile Processing: An Overview, Ind. Eng. Chem. Res., 39(12), 4806(2000). https://doi.org/10.1021/ie0002475
  75. A. Ferri, M. Banchero, L. Manna, and S. Sicardi, An Experimental Technique for Measuring High Solubilities of Dyesin SupercriticalCarbon Dioxide, J. of Supercritical Fluids, 30(1), 41(2004). https://doi.org/10.1016/S0896-8446(03)00114-1
  76. T. Dirk, M. Gerhard, and M. Schneider, High-pressure Solubility of Disperse Dyes in Near- and Supercritical Fluids: Measurements up to 100 MPa by a Static Method, J. of Supercritical Fluids, 13(1-3), 37(1998). https://doi.org/10.1016/S0896-8446(98)00032-1
  77. B. Cornelia, B. Wagner, and M. Schneider, High-pressure Solubility of 1,4-bis-(n-alkylamino)-9,10-anthraquinones in Near- and Supercritical Carbon Dioxide, J. of Supercritical Fluids, 13(1-3), 43(1998). https://doi.org/10.1016/S0896-8446(98)00033-3
  78. J. Beckman, Supercritical and Near-critical $CO_2$ in Green Chemical Synthesis and Processing, J. of Supercritical Fluids, 28(2-3), 121(2004). https://doi.org/10.1016/S0896-8446(03)00029-9
  79. E. Bacha, E. Cleve, J. Schuttken, E. Schollmeyer, and W. Rucker, Correlation of Solubility Data of Azo Disperse Dyes with the Dye Uptake of Poly(ethyleneterephthalate) Fibresin Supercritical Carbon Dioxide, Coloration Technology, 117(1), 13(2006). https://doi.org/10.1111/j.1478-4408.2001.tb00329.x
  80. Y. Iwai, M. Uno, H. Nagano, and Y. Arai, Measurement of Solubilities of Palmitic Acid in Supercritical Carbon Dioxide and Entrainer Effect of Water by FT-IR Spectroscopy, Coloration Technology, 28(2-3), 13(2004).
  81. R. Tabaraki, T. Khayamian, and A. A. Ensafi, Wavelet Neural Network Modeling in QSPR for Prediction of Solubility of 25 Anthraquinone Dyes at Different Temperatures and Pressuresin Supercritical Carbon Dioxide, J. Mol. Graph. Model., 25(1), 46(2006). https://doi.org/10.1016/j.jmgm.2005.10.012
  82. R. Tabaraki, T. Khayamian, and A. A. Ensafi, Solubility Prediction of 21 Azo Dyesin Supercritical Carbon Dioxide Using Wavelet Neural Network, Dye. Pigment., 73(2), 230(2007). https://doi.org/10.1016/j.dyepig.2005.12.003
  83. A. Tarasova, F. Burden, J. Gasteiger, and A. D. Winkler, Robust Modelling of Solubility in Supercritical Carbon Dioxide Using Bayesian Methods, J. Mol. Graph. Model., 28(7), 593(2010). https://doi.org/10.1016/j.jmgm.2009.12.004
  84. J. S. Sanchez, M. T. F. Ponce, L. Casas, C. Mantell, J. Martinez, and I. Ossa, Impregnation of Polyester Fibers in Supercritical Carbon Dioxide, Applied Polymer Science, 128, 208(2017).
  85. H. Sung and J. Shim, Solubility of C. I. Disperse Red 60 and C.I. Disperse Blue 60 in Supercritical Carbon Dioxide, J. of Chemical and Engineering Data, 44(5), 985 (1999). https://doi.org/10.1021/je990018t
  86. I. Tabata, J. Lyu, S. Cho, and T. Hori, Relationship Between the Solubility of Disperse Dyes and Equilibrium Dye Adsorption in Supercritical Fluid Dyeing, Color Technol, 117(6), 346(2001). https://doi.org/10.1111/j.1478-4408.2001.tb00088.x
  87. T. Hori, K. Hirogaki, and I. Tabata, Present Situation of Supercritical Fluid Dyeing and Finishing, 1st International Symposium on Supercritical $CO_2$ Dyeing and Finishing, Daegu, pp.1-3, 2018.