DOI QR코드

DOI QR Code

Study on Optimum Mixture of Industrial By-Products for Lightweight Foamed Filler Production by Mixture Experimental Design

혼합물 실험계획법에 의한 경량기포 충전재 제조를 위한 산업부산물의 최적 배합 검토

  • Received : 2019.01.10
  • Accepted : 2019.03.27
  • Published : 2019.03.30

Abstract

This research studied production of lightweight filling production for sink hole restoration utilizing various industrial by-products(2kinds of fly ash, petro-cokes CFBC ash, blast furnace slag fine particle). For this purpose, the mixed raw material properties(compressive strength) behaviors according to the blending ratio of industrial by-products were examined by applying the experimental design method and statistical analysis was performed using the commercial program MINITAB. Compressive strengths of industrial by-products were strongly dependent on blast furnace slag powder. Compressive strength(3days aging) was 3~11MPa depending on the amount of blast furnace slag powder used. The use of CFBC fly ash was evaluated to have the least effect on compressive strength. In addition, the compressive strength and the coefficient of permeability were measured by preparing foamed concrete for the experimental batch 1 condition in the mixture experimental design. In this case, the bulk density is 0.9 to 1.0, the apparent porosity is 30 to 50%, the compressive strength(3days old) is 1 to 2MPa, and the permeability coefficient is $10^{-2}$ to $10^{-3}cm/sec$.

본 연구에서는 각종 산업부산물(플라이애시 2종, 페트로 코크스 연소 유동층 보일러 애시 및 고로 슬래그 미분말)을 활용한 싱크홀 복구용 경량 충전재 제조에 관한 연구를 수행하였다. 이를 위해 혼합물 실험계획법을 적용하여 산업부산물의 배합비에 따른 혼합 원료 물성(압축강도) 거동을 검토하였고, 상용프로그램인 MINITAB을 사용하여 통계적 분석을 하였다. 산업부산물의 배합조건별 압축강도는 고로 슬래그 미분말에 강한 의존성을 나타냈으며, 압축강도(3일 재령)는 고로 슬래그 미분말 사용량에 3~11MPa 수준이며, 유동층 보일러 플라이애시의 사용은 압축강도 발현에 미치는 영향이 가장 적은 것으로 평가되었다. 그리고 혼합물 실험계획에 따른 원료 배치 1조건에 대해서 기포 콘크리트를 제조하여 압축강도와 투수계수를 측정하였으며, 이때 부피비중 0.9~1.0, 겉보기 기공률은 30~50% 수준, 압축강도(3일 재령)는 1~2MPa 수준, 투수계수는 $10^{-2}{\sim}10^{-3}cm/sec$ 수준이다.

Keywords

GSJHDK_2019_v7n1_37_f0001.png 이미지

Fig. 1. Particle size distribution of powders

GSJHDK_2019_v7n1_37_f0002.png 이미지

Fig. 2. Microstructure of powder

GSJHDK_2019_v7n1_37_f0003.png 이미지

Fig. 4. Measurement of flow test and permeability coefficient

GSJHDK_2019_v7n1_37_f0004.png 이미지

Fig. 5. Relationship between of strength and mixing ratio(I)

GSJHDK_2019_v7n1_37_f0005.png 이미지

Fig. 6. Relationship between of strength and mixing ratio(II)

GSJHDK_2019_v7n1_37_f0006.png 이미지

Fig. 7. Relationship between of strength and mixing ratio((III)

GSJHDK_2019_v7n1_37_f0007.png 이미지

Fig. 8. Compressive Strength at maximum condition

GSJHDK_2019_v7n1_37_f0008.png 이미지

Fig. 9. Compressive Strength at selected mixing ratio

GSJHDK_2019_v7n1_37_f0009.png 이미지

Fig. 10. Relationship between the amount of added foam and porosity

GSJHDK_2019_v7n1_37_f0010.png 이미지

Fig. 11. Relationship between foaming conditions and compressive strength

GSJHDK_2019_v7n1_37_f0011.png 이미지

Fig. 12. Relationship between porosity and compressive strength(3days)

Table 1. Design of experiment

GSJHDK_2019_v7n1_37_t0001.png 이미지

Table 2. Chemical components of powders used in the experiment

GSJHDK_2019_v7n1_37_t0002.png 이미지

GSJHDK_2019_v7n1_37_t0003.png 이미지

Fig. 3. Compressive strength test

Table 3. Mix Condition of foam concrete

GSJHDK_2019_v7n1_37_t0004.png 이미지

Table 4. Test result of compressive strength

GSJHDK_2019_v7n1_37_t0005.png 이미지

Table 5. Regression coefficient of compressive strength(3days)

GSJHDK_2019_v7n1_37_t0006.png 이미지

Table 6. ANOVA table of compressive strength(3days)

GSJHDK_2019_v7n1_37_t0007.png 이미지

Table 7. Test result of compressive strength

GSJHDK_2019_v7n1_37_t0008.png 이미지

References

  1. Chung, J.Y. (2011). Properties of Foamed Concrete according to Using Methods and Types of Foaming Agent, Ph.D Thesis, Kongju University [in Korean].
  2. Kim, J.M., Choi, H.G., Park, S.G. (2009). An experimental study on the pore structure and thermal properties of lightweight foamed concrete by foaming agent type, Journal of the Korea Institute of Building Construction, 9(4), 63-73 [in Korean]. https://doi.org/10.5345/JKIC.2009.9.4.063
  3. Lee, S.A. (2009). Optimized mixing design of lightweight aerated concrete by response surface analysis, Journal of the Korea Concrete Institute, 21(6), 745-752. https://doi.org/10.4334/JKCI.2009.21.6.745
  4. Lee, S.B. (2014). Minitab Example Oriented Design of Experiments, Eretec Inc., 337-427 [in Korean].
  5. Oh, B.H., Chung, W.K., Cha, S.W., Jang, B.S. (1996). An experimental study on the permeability measurement and development of ultra low perneable concrete, Journal of the Korea Concrete Institute, 8(5), 189-200 [in Korean].
  6. Park, I.J. (2015). The present situation and countermeasures of the Sink hole, Journal of Disaster Prevention, 17(2), 64-72 [in Korean].
  7. Shin, S.C. (2010). "The porosity and permeability properties of low density foamed concrete," Proceedings of the Architectural Institute of Korea, 2010(1), 459-462 [in Korean].