DOI QR코드

DOI QR Code

Property Evaluation of Tungsten-Carbide Hard Materials as a Function of Binder

소결조제 변화에 따른 텅스텐카바이드 소결체 특성평가

  • Kim, Ju-Hun (Korea Institute of Industrial Technology (KITECH), EV Components Materials) ;
  • Oh, Ik-Hyun (Korea Institute of Industrial Technology (KITECH), EV Components Materials) ;
  • Lee, Jeong-Han (Korea Institute of Industrial Technology (KITECH), EV Components Materials) ;
  • Hong, Sung-Kil (Division of Advanced Materials Engineering, Chonnam National University) ;
  • Park, Hyun-Kuk (Korea Institute of Industrial Technology (KITECH), EV Components Materials)
  • 김주훈 (한국생산기술연구원 EV부품소재그룹) ;
  • 오익현 (한국생산기술연구원 EV부품소재그룹) ;
  • 이정한 (한국생산기술연구원 EV부품소재그룹) ;
  • 홍성길 (전남대학교 신소재공학과) ;
  • 박현국 (한국생산기술연구원 EV부품소재그룹)
  • Received : 2019.04.19
  • Accepted : 2019.04.26
  • Published : 2019.04.28

Abstract

Tungsten carbide (WC) hard materials are used in various industries and possess a superior hardness compared to other hard materials. They have particularly high melting points, high strength, and abrasion resistance. Accordingly, tungsten carbide hard materials are used for wear-resistant tools, cutting tools, machining tools, and other tooling materials. In this study, the WC-5wt.%Co, Fe, Ni hard materials are densified using the horizontal ball milled WC-Co, WC-Fe, and WC-Ni powders by a spark plasma sintering process. The WC-5Co, WC-5Fe, and WC-5Ni hard materials are almost completely densified with a relative density of up to 99.6% after simultaneous application of a pressure of 60 MPa and an electric current for about 15 min without any significant change in the grain size. The average grain size of WC-5Co, WC-5Fe, and WC-5Ni that was produced through SPS was about 0.421, 0.779, and $0.429{\mu}m$, respectively. The hardness and fracture toughness of the dense WC-5Co, WC-5Fe, WC-5Ni hard materials were also investigated.

Keywords

References

  1. H. C. Kim, Ph D. Thesis (in Korean), Chonbuk University Chonbuk (2005) 15.
  2. H. C. Kim, I. J. Shon and Z. A. Munir : J. Mater. Sci., 40 (2005) 2849. https://doi.org/10.1007/s10853-005-2422-9
  3. H. C. Kim, D. Y. Oh and I. J. Shon : Int. J. Refract. Met. and Hard Mater., 22 (2004) 197. https://doi.org/10.1016/j.ijrmhm.2004.06.006
  4. H. C. Kim, H. K. Park, I. K. Jung, I. Y. Ko and I. J. Shon : Ceram. Int., 34 (2008) 1419. https://doi.org/10.1016/j.ceramint.2007.03.029
  5. Z. Shen, M. Johnsson, Z. Zhao and M. Nygren : J. Am. Ceram. Soc., 85 (2002) 1921. https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  6. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka-Kummar : Appl. Phys. Lett., 85 (2004) 573. https://doi.org/10.1063/1.1774268
  7. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir : Intermetallics, 12 (2004) 589. https://doi.org/10.1016/j.intermet.2004.02.005
  8. J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir : Acta Mater., 51 (2003) 4487. https://doi.org/10.1016/S1359-6454(03)00284-2
  9. H. C. Kim, I. J. Shon, I. K. Jung and I. Y. Ko : Met. Mater. Int., 12 (2006) 393. https://doi.org/10.1007/BF03027705
  10. K. Jia, T. E. Fischer and B. Gallois : Nanostruct. Mater., 10 (1998) 875. https://doi.org/10.1016/S0965-9773(98)00123-8
  11. J. H. Han and D. Y. Kim : Acta Mater., 46 (1998) 2021. https://doi.org/10.1016/S1359-6454(97)00442-4
  12. I. K. Jeong, J. H. Park, J. M. Doh, K. Y. Kim, K. D. Woo, I. Y. Ko and I. J. Shon : J. Kor. Inst. Met & Mater., 46 (2008) 223.
  13. M.J. Ledoux, C. P. Huu, J. Guille and H. Dunlop : J. Catal., 134 (1992) 383. https://doi.org/10.1016/0021-9517(92)90329-G
  14. C. Suryanarayana, M. Grant, and C. Norton : X-ray diffraction a practical approach, Plenum Press, New York (1998).
  15. G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall : J. Am. Ceram. Soc., 64 (1981) 533. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x