DOI QR코드

DOI QR Code

An Analysis of Observational Environments for Solar Radiation Stations of Korea Meteorological Administration using the Digital Elevation Model and Solar Radiation Model

수치표고모델과 태양복사모델을 이용한 기상청 일사 관측소 관측환경 분석

  • Jee, Joon-Bum (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Kim, Bu-Yo (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
  • 지준범 (한국외국어대학교 대기환경연구센터) ;
  • 조일성 (강릉원주대학교 복사-위성연구소) ;
  • 김부요 (강릉원주대학교 복사-위성연구소) ;
  • 이규태 (강릉원주대학교 복사-위성연구소)
  • Received : 2019.02.07
  • Accepted : 2019.04.03
  • Published : 2019.04.30

Abstract

In order to analyze the observational environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we used the digital elevation model (DEM) and the solar radiation model to calculate a topographical shading, sky view factor (SVF) and solar radiation by surrounding terrain. The sky line and SVF were calculated using high resolution DEM around 25 km of the solar stations. We analyzed the topographic effect by analyzing overlapped solar map with sky line. Particularly, Incheon station has low SVF whereas Cheongsong and Chupungryong station have high SVF. In order to validation the contribution of topographic effect, the solar radiation calculated using GWNU solar radiation model according to the sky line and SVF under the same meteorological conditions. As a result, direct, diffuse and global solar radiation were decreased by 12.0, 5.6, and 4.7% compared to plane surface on Cheongsong station. The 6 stations were decreased amount of mean daily solar radiation to the annual solar radiation. Among 42 stations, eight stations were analyzed as the urgent transfer stations or moving equipment quickly and more than half of stations (24) were required to review the observational environment. Since the DEM data do not include artifacts and vegetation around the station, the stations need a detail survey of observational environment.

기상청 일사관측소 관측환경 분석을 위하여 수치표고모델(DEM)과 태양복사모델을 이용하여 주변지형에 의한 차폐와 하늘시계요소(SVF) 및 일사량을 산출하였다. 지형고도자료(10 m 해상도)를 통해 관측소를 중심으로 주변 25 km내의 지형들을 이용하여 스카이라인과 SVF를 계산하였다. 또한, 일사관측소별 산출된 천기도와 스카이라인을 중첩하여 지형에 의한 차폐를 분석하였다. 특히 인천 관측소는 주변지형의 차폐가 적었고 청송군과 추풍령 관측소는 주변 지형에 의한 차폐가 큰 관측소로 나타났다. 태양복사모델을 이용하여 동일 조건에서 지형 특성에 따른 일사량을 산출하여 지형에 의한 기여도를 분석하였다. 연누적 일사량 계산결과, 청송군 관측소의 경우 수평면 일사량과 비교하였을 때 직달일사량은 12.0% 이상 차폐되었고 산란일사량은 5.6% 그리고 전천일사량은 4.7% 감소하였다. 평균 일누적 일사량을 기준으로 편차를 분석하였을 때 0.3% 이상 전천일사량이 감소되는 지점은 6개 관측소였다. 42개 관측소 중 8소는 관측소의 이전 또는 관측장비의 이동설치가 시급한 것으로 분석되었고 1/2 이상(24소)의 관측소는 일사관측환경에 대한 검토가 필요한 것으로 분석되었다. DEM자료는 관측소 주변의 인공구조물과 식생 등이 포함되지 않기 때문에 더 상세한 관측환경분석이 요구된다.

Keywords

References

  1. Aguilar, C., Herrero, J., and Polo, M.J., 2010, Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale. Hydrology and Earth System Sciences, 14, 2479-2494. https://doi.org/10.5194/hess-14-2479-2010
  2. Corripio, J.G., 2003, Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in 30 mountainous terrain. International Journal of Geographical Information Science, 17(1), 1-23. https://doi.org/10.1080/713811744
  3. Dragut, L., and Eisnak, C., 2012, Automated object-based classification of topography from STRM data. Geomorphology, 141, 21-33. https://doi.org/10.1016/j.geomorph.2011.12.001
  4. Hopkinson, C., Chasmer, L., Munro, S., and Demuth, M.N., 2010, The influence of DEM resolution on simulated solar radiation induced glacier melt. Hydrological processes, 24(6), 775-788. https://doi.org/10.1002/hyp.7531
  5. Jee, J.B., Kim, Y.D., Lee, W.H. and Lee, K.T., 2010, Temporal and spatial distributions of solar radiation with surface pyranometer data in South Korea. Journal of the Korean Earth Science Society, 31(7), 720-737. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.720
  6. Jee, J.B., and Choi, Y.J., 2014, Conjugation of Landsat data for analysis of the land surface properties in capital area. Journal of Korean Earth Sciences Society, 35(1), 54-68. (in Korean) https://doi.org/10.5467/JKESS.2014.35.1.54
  7. Kumar, L., Skidmore, A.K., and Knowles, E., 1997, Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science, 11(5), 475-497. https://doi.org/10.1080/136588197242266
  8. Tasumi, M., Allen, R.G., and Trezza, R., 2006, DEM based solar radiation estimation model for hydrological studies. Hydrology Science and Technology, 22, 1-4.
  9. Long, C.N., and Shi, Y., 2006, The QCRad Value Added Product: Surface radiation measurement quality control testing, including climatologically configurable limits. Atmospheric Radiation Measurement Program Technical Report, ARM TR-074, 69 p.
  10. McArthur, L.J.B., 2005, Baseline Surface Radiation Network (BSRN). Operations manual Version 2.1, WCRP-121, WMO/TD-No. 1274.
  11. Olson, M.H., and Rupper, S.B., 2018, Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography. The Cryosphere Discussions, https://doi.org/10.5194/tc-2018-64
  12. Park, H.I, Zo, I.S., Kim, B.Y., Jee, J.B., and Lee, K.T., 2017, An analysis of global solar radiation using the GWNU solar radiation model and automatic total cloud cover instrument in Gangneung region. Journal of the Korean Earth Science Society, 38(2), 129-140. (in Korean) https://doi.org/10.5467/JKESS.2017.38.2.129
  13. WMO (World Meteorological Organization), 1986, Revised instruction manual on radiation instruments and measurements. World Climate Research Programme Publications Series No. 7, WMO/TDNo.149, Geneva
  14. WMO (World Meteorological Organization), 1998, Baseline Surface Radiation Network (BSRN): Operations manual. WMO/TD-No. 879, Geneva.
  15. WMO (World Meteorological Organization), 2008, Guide to meteorological instruments and methods of observation, WMO-No.8 (CIMO Guide), 1.4-29.
  16. Yi, C., Shin, Y., and An, S.M., 2017, A study on a comparison of sky view factors and a correlation with air temperature in the city. Atmosphere, 27(4), 483-498. (in Korean) https://doi.org/10.14191/ATMOS.2017.27.4.483
  17. Zo, I.S., Jee, J.B., and Lee, K.T., 2014, Development of GWNU (Gangneung-Wonju National University) onelayer transfer model for calculation of solar radiation distribution of the Korea peninsula. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 575-584. https://doi.org/10.1007/s13143-014-0047-0