DOI QR코드

DOI QR Code

Diversity and Interaction of Pollination Network from Agricultural Ecosystems during Summer

경북과 강원지역 농업생태계에서 여름철 화분매개네트워크 다양성과 상호작용

  • Received : 2019.09.01
  • Accepted : 2019.09.29
  • Published : 2019.09.30

Abstract

Pollination is an important ecosystem service involved in plant breeding and reproduction. This study analyzed the pollination network, which is the interaction between flowering plants and flower-visiting insects in the agricultural landscape. Flower-visiting insects from blossoms of flowering crops and surrounding plants were quantitatively surveyed during summer time. The pollinator species and abundance on each flowering plant were analyzed. A total of 2,381 interactions were indentified with 154 pollinators on 30 species of plants. Species richness of the pollinators was highest in Coleoptera (34%) followed by Hymenoptera (28%), Diptera (28%) and Lepidoptera (10%). Apis mellifera dominated (50%) followed by Calliphora vomitoria (5.3%) and Xylocopa appendiculata among pollinators, and remaining wild pollinators provided complex interaction. Among plants, Platycodon grandiflorum, Perilla frutescen and Fagopyrum esculentum harbored most pollinators and showed highest interaction frequencies. In the modular analysis, Apis mellifera was located as a hub-species which connect the interaction of others, implying most important role in the network. This results provide the basic information on the pollinator species associated with each crop and pollinator habitat in which plant provide the nectar, pollen and habitat resources for wild pollinators.

여름철 경북과 강원지역 농업생태계의 화분매개네트워크를 조사한 결과 총 2,381개의 상호작용이 나타났으며, 식물 14목 17과 28속 30종에 대해 화분매개자는 4목 52과 129속 154종이 나타났다. 전체 화분매개자 중 양봉꿀벌이 50% 이상 우점하고 있었고 도라지, 들깨, 메밀 등이 식물 종 중에서 가장 많은 참여빈도수를 보였다. 화분매개자 다양성은 딱정벌레 분류군이 34%로 가장 높았으나, 상호작용 참여빈도수는 벌목이 66%로 가장 높게 나타났다. 딱정벌레목과 파리목에서 루드베키아를 선호하는 것이 공통적으로 나타났고, 벌목과 나비목에서는 도라지를 가장 선호한 것으로 나타났다. 딱정벌레목을 제외한 벌목, 파리목, 나비목에서는 도라지를 선호하는 것이 공통점으로 나타났다. 모듈화는 9개의 집단이 나타났으며, 양봉꿀벌이 모듈 간의 연결에 영향을 주는 주요 허브종으로 나타났다. 이번 연구로 여름철 경북과 강원지역 농업생태계화분매개네트워크의 구조를 확인할 수 있었고, 화분매개자들의 주요 선호도와, 우점 종들을 알 수 있었다. 이 결과는 작물별 필요 화분매개자를 확인할 수 있고, 화분매개서식처 조성을 통한 화분매개자 보호 증식의 기초 자료로 활용될 수 있다.

Keywords

References

  1. Altieri, M. A. 1999. The ecological role of biodiversity in agroecosystems. Amsterdam: Elsevier, 19-31.
  2. Bascompte, J. 2007. Networks in ecology. Basic and Applied Ecology 8: 485-490. https://doi.org/10.1016/j.baae.2007.06.003
  3. Bascompte, J. and P. Jordano. 2007. Plant-animal mutualistic networks: The architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics 38: 567-593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818
  4. Basilio, A. M., D. Medan, J. P. Torretta and N. J. Bartoloni. 2006. A year-long plant-pollinator network. Austral Ecology 31(8): 975-983. https://doi.org/10.1111/j.1442-9993.2006.01666.x
  5. Bennett, A. B. and S. Lovell. 2019. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. Plos One 14(2): e0212034. https://doi.org/10.1371/journal.pone.0212034
  6. Bierzychudek, P. 1981. Pollinator limitation of plant reproductive effort. The American Naturalist 117(5): 838-840. https://doi.org/10.1086/283773
  7. Choi, S. W. and C. Jung. 2015. Diversity of insect pollinators in different agricultural crops and wild flowering plants in Korea: literature review. Journal of Apiculture 30: 191-201. https://doi.org/10.17519/apiculture.2015.09.30.3.191
  8. Consonni, R., L. R. Cagliani, T. Docimo, A. Romane and P. Ferrazzi. 2013. Perilla frutescens (L.) britton: Honeybee forage and preliminary results on the metabolic profiling by NMR spectroscopyt. Natural Product Research 27: 1743-1748. https://doi.org/10.1080/14786419.2012.751598
  9. Cussans, J., D. Goulson, R. Sanderson, L. Goffe, B. Darvill and J. L. Osborne. 2010. Two bee-pollinated plant species show higher seed production when grown in gardens compared to arable farmland. Plos One 5(7): e11753. https://doi.org/10.1371/journal.pone.0011753
  10. Danieli-Silva, A., J. M. T. de Souza, A. J. Donatti, R. P. Campos, J. Vicente-Silva, L. Freitas and I. G. Varassin. 2012. Do pollination syndromes cause modularity and predict interactions in a pollination network in tropical high-altitude grasslands? Oikos 121(1): 35-43. https://doi.org/10.1111/j.1600-0706.2011.19089.x
  11. Diekotter, T., T. Kadoya, F. peter, V. wolters and F. jauker. 2010. Oilseed rape crops distort plant-pollinator interactions. Journal of Applied Ecology 47(1): 209-214. https://doi.org/10.1111/j.1365-2664.2009.01759.x
  12. Dupont, Y. L., K. Trojelsgaard, M. Hagen, M. V. Henriksen, J. M. Olesen, N. M. E. Pedersen and W. D. Kissling. 2014. Spatial structure of an individual-based plant-pollinator network. Oikos 123(11): 1301-1310. https://doi.org/10.1111/oik.01426
  13. Ebeling, A., A. Klein, J. Schumacher, W. W. Weisser and T. Tscharntke. 2008. How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 117(12): 1808-1815. https://doi.org/10.1111/j.1600-0706.2008.16819.x
  14. Garibaldi, L. A., I. Steffan-Dewenter, R. Winfree, M. A. Aizen, R. Bommarco, S. A. Cunningham, C. Kremen, L. G. Carvalheiro, L. D. Harder, O. Afik, I. Bartomeus, F. Benjamin, V. Boreux, D. Cariveau, N. P. Chacoff, J. H. Dudenhoffer, B. M. Freitas, J. Ghazoul, S. Greenleaf, J. Hipolito, A. Holzschuh, B. Howlett, R. Isaacs, S. K. Javorek, C. M. Kennedy, K. M. Krewenka, S. Krishnan, Y. Mandelik, M. M. Mayfield, I. Motzke, T. Munyuli, B. A. Nault, M Otieno, J. Petersen, G. Pisanty, S. G. Potts, R. Rader, T. H. Ricketts, M. Rundlof, C. L. Seymour, C. Schuepp, H. Szentgyorgyi, H. Taki, T. Tscharntke, C. H. Vergara, B. F. Viana, T. C. Wanger, C. Westphal, N. Williams and A. M. Klein. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339: 1608-1611. https://doi.org/10.1126/science.1230200
  15. Ghosh, S. and C. Jung. 2016. Global honeybee colony trend is positively related to crop yields of medium pollination dependence. Journal of Apiculture 31(1): 85-95. https://doi.org/10.17519/apiculture.2016.04.31.1.85
  16. Ghosh, S. and C. Jung. 2018. Contribution of insect pollination to nutritional security of minerals and vitamins in Korea. Journal of Asia-Pacific Entomology 21: 598-602. https://doi.org/10.1016/j.aspen.2018.03.014
  17. Gilpin, A., A. J. Denham and D. J. Ayre. 2019. Are there magnet plants in australian ecosystems: Pollinator visits to neighbouring plants are not affected by proximity to mass flowering plants. Basic and Applied Ecology 35: 34-44. https://doi.org/10.1016/j.baae.2018.12.003
  18. Gilpin, A., A. J. Denham and D. J. Ayre. 2019. Do mass flowering agricultural species affect the pollination of australian native plants through localised depletion of pollinators or pollinator spillover effects? Ecosystems & Environment 227: 83-94. https://doi.org/10.1016/j.agee.2019.03.010
  19. Giulio, M. D., P. T. Edwards and E. Meister. 2001. Enhancing insect diversity in agricultural grasslands: The roles of management and landscape structure. Journal of Applied Ecology 38(2): 310-319. https://doi.org/10.1046/j.1365-2664.2001.00605.x
  20. Grab, H., E. J. Blitzer, B. Danforth, G. Loeb and K. Poveda. 2017. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Scientific Reports 7: 45296. https://doi.org/10.1038/srep45296
  21. Hagen, M. and M. Kraemer. 2010. Agricultural surroundings support flower-visitor networks in an afrotropical rain forest. Biological Conservation 143: 1654-1663. https://doi.org/10.1016/j.biocon.2010.03.036
  22. Holzchuh, A., C. F. Dormann, T. Tschamtke and I. Steffan-Dewenter. 2011. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proceedings of the Royal Society B: Biological Sciences 278(1723): 3444-3451. https://doi.org/10.1098/rspb.2011.0268
  23. Jauker, F., B. Jauker, I. Grass, I. Steffan-Dewenter and V. Wolters. 2019. Partitioning wild bee and hoverfly contributions to plant-pollinator network structure in fragmented habitats. Ecology 100(2): e02569. https://doi.org/10.1002/ecy.2569
  24. Jennersten, O. 1988. Pollination in Dianthus deltoides (caryophyllaceae): Effects of habitat fragmentation on visitation and seed set. Conservation Biology 2(4): 359-366. https://doi.org/10.1111/j.1523-1739.1988.tb00200.x
  25. Jin, L. and S. Jinzheng. 2001. Pollination rates and seed set in Platycodon grandiflorus (jacq.) A. DC. Acta Scientiarum Naturalium Universitatis Normalis Hunanensis 24: 73-75.
  26. Jung, C. 2008. Economic Value of Honeybee Pollination on Major Fruit and Vegetable Crop in Korea. Kor. J. Apic. 23: 147-152.
  27. Jung, C. 2014. Global attention on pollinator diversity and ecosystem service: IPBES and honeybee. Kor. J. Apic. 27: 213-215.
  28. Kaiser-Bunbury, C., J. Mougal, A. E. Whittington, T. Valentin, R. Gabriel, J. M. Olesen and N. Bluthgen. 2017. Ecosystem restoration strengthens pollination network resilience and function. Nature 542-223.
  29. Kim, D. W., H. S. Lee and C. Jung. 2009. Comparison of Flower-visiting Hymenopteran Communities from Apple, Pear, Peach and Persimmons Blossoms. Kor. J. Apic. 24: 227-235.
  30. Kim, D.W., W. K. Yun and C. Jung. 2014. Residual toxicity of carbaryl and lime sulfur on the European honey bee, Apis mellifera (Hymenoptera: Apidae) and buff-tailed bumble bee, Bombus terrestris(Hymenoptera: Apidae). Kor. J. Apic. 29(4): 341-348.
  31. Klein, A.-M., B. E. Vaissiere, J. H. Cane, I. Steffan-Dewenter, S. A. Cunningham, C. Kremen and T. Tscharntke. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274: 303-313. https://doi.org/10.1098/rspb.2006.3721
  32. Kovacs-Hostyanszki, A., S. Haenke, P. Batary, B. Jauker, A. Baldi, T. Tscharntke and A. Holzschuh. 2013. Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecological Applications 23(8): 1938-1946. https://doi.org/10.1890/12-2012.1
  33. Lee, C. Y., S. M. Jeong, C. Jung and M. Burgett. 2016. Acute oral toxicity of neonicotinoid insecticides to four species of honey bee, Apis florea, A. cerana, A. mellifera, and A. dorsata. Journal of Apiculture 31(1): 51-58. https://doi.org/10.17519/apiculture.2016.04.31.1.51
  34. Memmott, J. 1999. The structure of a plant-pollinator food web. Ecology Letters 2(5): 276-280. https://doi.org/10.1046/j.1461-0248.1999.00087.x
  35. Naggar, Y. A., G. Codling, J. P. Giesy and A. Safer. 2018. Beekeeping and the need for pollination from an agricultural perspective in egypt. Bee World 95(4): 107-112. https://doi.org/10.1080/0005772X.2018.1484202
  36. Olesen, J. M. and E. Warncke. 1989. Flowering and seasonal changes in flower sex ratio and frequency of flower visitors in a population of saxifraga hirculus. Ecography 12(1): 21-30. https://doi.org/10.1111/j.1600-0587.1989.tb00818.x
  37. Olesen, J. M., J. Bascompte, H. Elberling and P. Jordano. 2008. Temporal dynamics in a pollination network. Ecology 89(6): 1573-1582. https://doi.org/10.1890/07-0451.1
  38. Olesen, J. M., J. Bascompte, Y. L. Dupont and P. Jordano. 2007. The modularity of pollination networks. Proc Natl Acad Sci USA 104: 19891. https://doi.org/10.1073/pnas.0706375104
  39. Olesen, J. M., L. I. Eskildsen and S. Venkatasamy. 2002. Invasion of pollination networks on oceanic islands: Importance of invader complexes and endemic super generalists. Diversity and Distributions 8(3): 181-192. https://doi.org/10.1046/j.1472-4642.2002.00148.x
  40. Potts, S. G., J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger and W. E. Kunin. 2010. Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution 25: 345-353. https://doi.org/10.1016/j.tree.2010.01.007
  41. Proulx, S. R., D. E. L. Promislow and P. C. Philips. 2005. Network thinking in ecology and evolution. Trends in Ecology & Evolution 20: 345-353. https://doi.org/10.1016/j.tree.2005.04.004
  42. R Development Core Team. 2008. R: a language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing.
  43. Ricketts, T. H., J. Regetz, I. Steffan-Dewenter, S. A. Cunningham, C. Kremen, A. Bogdanski, B. Gemmill-Herren, S. S. Greenleaf, A. M. Klein, M. M. Mayfield, L. A. Morandin, A. Ochieng and B. F. Viana. 2008. Landscape effects on crop pollination services: Are there general patterns? Ecology Letters 11(5): 499-515. https://doi.org/10.1111/j.1461-0248.2008.01157.x
  44. Santamaria, S., A. M. Sanchez, J. Lopez-Angulo, C. Ornosa, I. Mola and A. Escudero. 2018. Landscape effects on pollination networks in mediterranean gypsum islands. Plant Biology 20: 184-194. https://doi.org/10.1111/plb.12602
  45. Sikora, A., M. Pawel and K. Maria. 2016. Flowering plants preferred by bumblebees (Bombus Latr.) in the botanical garden of medicinal plants in wroclaw. Journal of Apicultural Science 60(2): 59-68. https://doi.org/10.1515/jas-2016-0017
  46. Topp, E. N. and J. Loos. 2019. Fragmented landscape, fragmented knowledge: A synthesis of renosterveld ecology and conservation. Environmental Conservation 46(2): 171-179. https://doi.org/10.1017/S0376892918000498
  47. Valido, A., M. C. Rodriguez-Rodriguez and P. Jordano. 2019. Honeybees disrupt the structure and functionality of plant-pollinator networks. Scientific Reports 9: 4711. https://doi.org/10.1038/s41598-019-41271-5
  48. Wratten, S. D., M. Gillespie, A. Decourtye, E. Mader and N. Desneux. 2012. Pollinator habitat enhancement: Benefits to other ecosystem services. Agriculture, Ecosystems & Environment 159: 112-122. https://doi.org/10.1016/j.agee.2012.06.020