DOI QR코드

DOI QR Code

Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions

  • Zhang, Yaning (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing)) ;
  • Cheng, Zhanbo (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing)) ;
  • Lv, Huayong (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing))
  • Received : 2019.03.16
  • Accepted : 2019.04.30
  • Published : 2019.05.20

Abstract

Physical conditions play vital role on the mechanical properties of frozen soil, especially for the temperature and moisture content of frozen soil. Subsequently, they influence the subsidence and stress law of permafrost layer. Taking Jiangcang No. 1 Coal Mine as engineering background, combined with laboratory experiment, field measurements and empirical formula to obtain the mechanical parameters of frozen soil, the thick plate mechanical model of permafrost was established to evaluate the safety of permafrost roof. At the same time, $FLAC^{3D}$ was used to study the influence of temperature and moisture content on the deformation and stress law of frozen soil layer. The results show that the failure tensile stress of frozen soil is larger than the maximum tensile stress of permafrost roof occurring in the process of mining. It indicates that the permafrost roof cannot collapse under the conditions of moisture content in the range from 20% to 27% as well as temperature in the range from $-35^{\circ}C$ to $-15^{\circ}C$. Moreover, the maximum subsidence of the upper and lower boundary of the overlying permafrost layer decreases with the increase of moisture content in the range of 15% to 27% or the decrease of temperature in the range of $-35^{\circ}C$ to $-15^{\circ}C$ if the temperature or moisture content keeps consistent with $-25^{\circ}C$ or 20%, respectively.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, China Scholarship Council

References

  1. Alvarez-Fernandez, M.I., Gonzalez-Nicieza, C., Menendez-Diaz, A. and Alvarez-Vigil, A.E. (2005), "Generalization of the n-k influence function to predict mining subsidence", Eng. Geol., 80(1-2), 1-36. https://doi.org/10.1016/j.enggeo.2005.02.004.
  2. Ambrozic, T. and Turk, G. (2003), "Prediction of subsidence due to underground mining by artificial neural networks", Comput. Geosci., 29(5), 627-637. https://doi.org/10.1016/S0098-3004(03)00044-X.
  3. Andersland, O.B. and Akili, W. (2015), "Stress effect on creep rates of a frozen clay soil", Geotechnique, 17(1), 27-39. https://doi.org/10.1680/geot.1967.17.1.27.
  4. Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kaab, A., Heim, B., and Boike, J. (2018), "Thaw subsidence of a yedoma landscape in northern Siberia, measured in situ and estimated from TerraSAR-X interferometry", Remote Sens., 10(4), 494. https://doi.org/10.3390/rs10040494.
  5. Azadegan, O., Li, J. and Jafari, S.H. (2014), "Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests", Geomech. Eng., 7(3), 247-261. https://doi.org/10.12989/gae.2014.7.3.247
  6. Azmatch, T.F., Sego, D.C., Arenson, L.U. and Biggar, K.W. (2011), "Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions", Cold Reg. Sci. Technol., 68(1-2), 85-90. https://doi.org/10.1016/j.coldregions.2011.05.002
  7. Azmatch, T.F., Sego, D.C., Arenson, L.U. and Biggar, K.W. (2012), "Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils", Cold Reg. Sci. Technol., 83-84, 103-109. https://doi.org/10.1016/j.coldregions.2012.07.002.
  8. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  9. Chen, J., Du, C., Jiang, D., Fan, J. and He, Y. (2016), "The mechanical properties of rock salt under cyclic loading- unloading experiments", Geomech. Eng., 10(3), 325-334. https://doi.org/10.12989/gae.2016.10.3.325.
  10. Cheng, X.S. (1989), Applied Theory of Plates and Shells, Shandong Science & Technology Press, Ji'nan, China (in Chinese).
  11. Cheng, Z.B., Zhang, Y.N., Li, L.H. and Lv, H.Y. (2018), "Theoretical solution and analysis of the elastic modulus and foundation coefficient of coal-rock combination material", Int. J. Mater. Sci Res., 1(1), 23-31. https://doi.org/10.18689/ijmsr-1000104
  12. Christ, M. and Kim, Y. (2009), "Experimental study on the physical-mechanical properties of frozen silt", KSCE J. Civ. Eng., 13(9), 317-324. https://doi.org/10.1007/s12205-009-0317-z.
  13. Dai, H.D., Yin, M.L., He, T.Y., Liu, k., Li, T. and Zheng, T.Q. (2014), "Research on the mechanical and thermophysical properties of frozen Soil in cretaceous formation", Appl. Mech. Mater., 580-583, 962-965. https://doi.org/10.4028/www.scientific.net/AMM.580-583.962.
  14. Evans, S.G., Ge, S., Voss, C.I., and Molotch, N.P. (2018), "The role of frozen soil in groundwater discharge predictions for warming alpine watersheds", Water Resour. Res., 54(3), 1599-1615. https://doi.org/10.1002/2017WR022098.
  15. Fu, Q., Wang, E., Li, T., and Hou, R. (2018), "Impact factors and dynamic simulation of tillage-layer temperature in frozen-thawed soil under different cover conditions", Int. J. Agr. Biol. Eng., 11(2), 101-107. https://doi.org/10.25165/j.ijabe.20181102.3068
  16. Hatheway, H.W. (2009), "The complete ISRM suggested methods for rock characterization, testing and monitoring, 1974-2006", Environ. Eng. Geosci., 15(1), 47-48. https://doi.org/10.2113/gseegeosci.15.1.47.
  17. He, G.L. (2009), "Determination of critical thickness of stiff roof in coal mine based on thick plate theory", Chin. J. Undergr. Sp. Eng., 5(4), 659-664 (in Chinese). https://doi.org/10.3969/j.issn.1673-0836.2009.04.007
  18. Hejmanowski, R. and Malinowska, A. (2009), "Evaluation of reliability of subsidence prediction based on spatial statistical analysis", Int. J. Rock Mech. Min., 46(2), 432-438. https://doi.org/10.1016/j.ijrmms.2008.07.012.
  19. Li, G.D., Zhang, H.S. and Li, H.H. (2013), "The comparative analysis of probability integration and numerical simulation in surface subsidence prediction", Appl. Mech. Mater., 295-298, 3015-3018. https://doi.org/10.4028/www.scientific.net/AMM.295-298.3015.
  20. Li, H., Zhu, Y., Zhang, J. and Lin, C. (2004), "Effects of temperature, strain rate and dry density on compressive strength of saturated frozen clay", Cold Reg. Sci. Technol., 39(1), 39-45. https://doi.org/10.1016/j.coldregions.2004.01.001
  21. Li, P.X., Tan, Z.X., Yan, L.L. and Deng, K.Z. (2011), "Time series prediction of mining subsidence based on a SVM", Int. J. Rock Mech. Min. Sci., 21(4), 557-562. https://doi.org/10.1016/j.mstc.2011.02.025.
  22. Liu, F., Guo, Z.R., Lv, H.Y., and Cheng, Z.B. (2018), "Test and analysis of blast wave in mortar test block", Int. J. Rock Mech. Min. Sci., 108, 80-85. https://doi.org/10.1016/j.ijrmms.2018.06.003.
  23. Liu, X.J. and Cheng, Z.B. (2019), "Changes in subsidence-field surface movement in shallow-seam coal mining", J. S. Afr. I. Min. Metall., 119(2), 201-206. http://dx.doi.org/10.17159/2411-9717/2019/v119n2a12.
  24. Lv, H.Y., Tang, Y.S., Zhang, L.F., Cheng, Z.B. and Zhang, Y.N. (2019), "Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack", Geomech. Eng., 17(4), 355-365. https://doi.org/10.12989/gae.2019.17.4.355.
  25. Nie, L., Wang, H., Xu, Y. and Li, Z. (2015), "A new prediction model for mining subsidence deformation: the arc tangent function model", Nat. Hazards, 75(3), 2185-2198. https://doi.org/10.1007/s11069-014-1421-z.
  26. Qin, S., Wang, S., Long, H., Liu, J., Qin, S. and Wang, S. (1999), "A new approach to estimating geo-stresses from laboratory Kaiser effect measurements", Int. J. Rock Mech. Min., 36(8), 1073-1077. https://doi.org/10.1016/S1365-1609(99)00068-4.
  27. Shang, T.L., Suo, Y.L. and Liu, Y.W. (2017), "Research on ascending mining in multiple coal seams under permafrost", Coal Technol., 36(7), 20-22 (in Chinese).
  28. Suo, Y.L. and Fan, Q.Q. (2014), "Study on rational exploiting elevation limit of coal mine with permafrost layer", Coal Technol., 33(5), 149-151 (in Chinese). https://doi.org/10.13301/j.cnki.ct.2014.05.056
  29. Sun, W.B., Du, H.Q., Zhou, F., and Shao, J.L., (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.
  30. Tu, Y.L., Zhong, Z.L., Luo, W.K., Liu, X.R. and Wang, S. (2016), "A modified shear strength reduction finite element method for soil slope under wetting-drying cycles", Geomech. Eng., 11(6), 739-756. https://doi.org/10.12989/gae.2016.11.6.739.
  31. Viso, J.R.D., Carmona, J.R. and Ruiz, G. (2008), "Shape and size effects on the compressive strength of high-strength concrete", Cement Concrete Res., 38(3), 386-395. https://doi.org/10.1016/j.cemconres.2007.09.020Get.
  32. Wang, M., Meng, S., Yuan, X., Sun, Y., and Zhou, J. (2018), "Experimental validation of vibration-excited subsidence model of seasonally frozen soil under cyclic loads", Cold Reg. Sci. Technol., 146, 175-181. https://doi.org/10.1016/j.coldregions.2017.11.001.
  33. Wang, T., Zhou, G., Wang, J. and Yin, L. (2017), "Stochastic thermal-mechanical characteristics of frozen soil foundation for a transmission line tower in permafrost regions", Int. J. Geomech., 18(3), 06017025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001087.
  34. Wang, Z.H. and Cheng, Z.B. (2016), "Hard roof fracturing form and dynamic disaster control in short island mining face", Chin. J. Rock Mech. Eng., 35(S2), 4018-4028 (in Chinese).
  35. Wu, X., Zhao, L., Liu, G., Xu, H., Zhang, X. and Ding, Y. (2018), "Effects of permafrost thaw-subsidence on soil bacterial communities in the southern Qinghai-Tibetan Plateau", Appl. Soil Ecol., 128, 81-88. https://doi.org/10.1016/j.apsoil.2018.04.007.
  36. Xu, H., Liu, B. and Fang, Z. (2014), "New grey prediction model and its application in forecasting land subsidence in coal mine", Nat. Hazards, 71(2), 1181-1194. https://doi.org/10.1007/s11069-013-0656-4.
  37. Xu, N., Kulatilake, P.H.S.W., Tian, H., Wu, X., Nan, Y. and Wei, T. (2013), "Surface subsidence prediction for the WUTONG mine using a 3-D finite difference method", Comput. Geotech., 48(3), 134-145. https://doi.org/10.1016/j.compgeo.2012.09.014.
  38. Xu, G., Wu, W., Kong, L. and Qi, J. (2018), "Hypoplastic modeling for the mechanical behavior of frozen soil in stress path testing", Int. J. Geomech., 18(6), 04018049. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001117.
  39. Yang, S.L., Wang, Z.H., Kong, D.Z., Cheng, Z.B. and Song, G.F., (2016), "Overlying strata failure process and support resistance determination in large mining height face", Chin. J. Rock Mech. Eng., 33(2), 199-207. (in Chinese)
  40. Yang, X., Wen, G., Dai, L., Sun, H. and Li, X. (2019), "Ground subsidence and surface cracks evolution from shallow-buried close-distance multi-seam mining: a case study in Bulianta Coal Mine", Rock Mech. Rock Eng., 1-18. https://doi.org/10.1007/s00603-018-1726-4.
  41. Yao, Y., Chen, J., Li, T., Fu, B., Wang, H., Li, Y. and Jia, H. (2019), "Soil liquefaction in seasonally frozen ground during the 2016 Mw6.6 Akto earthquake", Soil Dyn. Earthq. Eng., 117, 138-148. https://doi.org/10.1016/j.soildyn.2018.08.024.
  42. Yoshimoto, N., Wu, Y., Hyodo, M. and Nakata, Y. (2016), "Effect of relative density on the shear behavior of granulated coal ash", Geomech. Eng., 10(2), 207-224. https://doi.org/10.12989/gae.2016.10.2.207.
  43. Zhao, G. and Zhou, S. (2015), "Determining safe thickness of roof in subsea mining based on thick plate theory", Chin. J. Geological Hazard Control, 26(4), 60-66.
  44. Zhou, D., Wu, K., Miao, X. and Li, L. (2018a), "Combined prediction model for mining subsidence in coal mining areas covered with thick alluvial soil layer", B Eng. Geol. Environ., 77(1), 283-304. https://doi.org/10.1007/s10064-016-0961-8.
  45. Zhou, Z., Yang, H., Xing, K., and Gao, W. (2018b), "Prediction models of the shear modulus of normal or frozen soil-rock mixtures", Geomech. Eng., 15(2), 783-791. https://doi.org/10.12989/gae.2018.15.2.783.

Cited by

  1. Laboratory investigation of the mechanical properties of coal-rock combined body vol.79, pp.4, 2019, https://doi.org/10.1007/s10064-019-01613-z
  2. Experimental research on the effect of water-rock interaction in filling media of fault structure vol.24, pp.5, 2019, https://doi.org/10.12989/gae.2021.24.5.471
  3. Numerical simulation on the crack initiation and propagation of coal with combined defects vol.79, pp.2, 2019, https://doi.org/10.12989/sem.2021.79.2.237