DOI QR코드

DOI QR Code

Properties of Glued Laminated Timber Made from Fast-growing Species with Mangium Tannin and Phenol Resorcinol Formaldehyde Adhesives

  • Hendrik, Jessica (Department of Forest Products, Forestry Faculty, Bogor Agricultural University) ;
  • Hadi, Yusuf Sudo (Department of Forest Products, Forestry Faculty, Bogor Agricultural University) ;
  • Massijaya, Muh Yusram (Department of Forest Products, Forestry Faculty, Bogor Agricultural University) ;
  • Santoso, Adi (Forest Products Research Institute) ;
  • Pizzi, Antonio (ENSTIB-LERMAB,University of Lorraine)
  • Received : 2018.08.03
  • Accepted : 2019.04.16
  • Published : 2019.05.25

Abstract

This study characterized the chemical compounds in tannin from mangium (Acacia mangium) bark extract and determined the physical-mechanical properties of glued laminated timber (glulam) made from sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), and mangium wood. The adhesives used to prepare the glulam were based on mangium tannin and phenol resorcinol formaldehyde resin. Five-layer glulam beams measuring $5cm{\times}6cm{\times}120cm$ in thickness, width, and length, respectively, were made with a glue spread of $280g/m^2$ for each glue line, cold pressing at $10.5kgf/cm^2$ for 4 h and clamping for 20 h. Condensed mangium tannin consisted of 49.08% phenolic compounds with an average molecular weight of 4745. The degree of crystallinity was 14.8%. The Stiasny number was 47.22%. The density and the moisture content of the glulams differed from those of the corresponding solid woods with mangium having the lowest moisture content (9.58%) and the highest density ($0.66g/cm^3$). The modulus of rupture for all glulam beams met the JAS 234-2003 standard but the modulus of elasticity and the shear strength values did not. Glulam beams made with tannin had high delamination under dry and wet conditions, but glulam made from sengon and jabon wood met the standard's requirements. All glulam beams had low formaldehyde emissions and were classified as $F^{****}$ for formaldehyde emissions according to the JAS 234 (2003) standard.

Keywords

HMJGBP_2019_v47n3_253_f0001.png 이미지

Fig. 1. Cutting model of glulam for each test specimen.

HMJGBP_2019_v47n3_253_f0002.png 이미지

Fig. 2. Chromatograph of mangium tannin extract (a) and tannin resorcinol formaldehyde, TRF (b).

HMJGBP_2019_v47n3_253_f0003.png 이미지

Fig. 3. MALDI mass spectrum of (a) details of the 800-1000 Da range; (b) details of the 1000-2000 Da range.

HMJGBP_2019_v47n3_253_f0004.png 이미지

Fig. 4. The flavonoid units in mangium tannin extract.

HMJGBP_2019_v47n3_253_f0005.png 이미지

Fig. 5. X-ray diffraction patterns of mangium extract (a) and TRF (b).

Table 1. Chromatic photometric absorption bands of mangium tannin extract and TRF

HMJGBP_2019_v47n3_253_t0001.png 이미지

Table 2. MALDI peaks for the mangium tannin extract

HMJGBP_2019_v47n3_253_t0002.png 이미지

Table 3. Physical properties of glulams

HMJGBP_2019_v47n3_253_t0003.png 이미지

Table 4. ANOVA of physical and mechanical properties of glulam

HMJGBP_2019_v47n3_253_t0004.png 이미지

Table 5. Duncan’s test for the physical and mechanical properties of glulam based on wood species

HMJGBP_2019_v47n3_253_t0005.png 이미지

Table 6. Duncan’s test for the physical and mechanical properties of glulam based on adhesive type

HMJGBP_2019_v47n3_253_t0006.png 이미지

Table 7. Mechanical properties of glulams

HMJGBP_2019_v47n3_253_t0007.png 이미지

Table 8. Glulam delamination test

HMJGBP_2019_v47n3_253_t0008.png 이미지

Table 9. Formaldehyde emissions from glulam

HMJGBP_2019_v47n3_253_t0009.png 이미지

References

  1. Achmadi, S.S. 1990. Wood Chemistry. Life Sciences Center, Bogor Agricultural University, Bogor, Indonesia.
  2. Fradinho, D.M., Neto, C.P., Evtuguin, D., Jorge, F.C., Irle, M.A., Gil, M.H., Pedrosa de Jesus, J. 2002. Chemical characterization of bark and of alkaline bark extracts from maritime pine grown in Portugal. Industrial Crops Production 16(1): 23-32. https://doi.org/10.1016/S0926-6690(02)00004-3
  3. Hadi, Y.S., Rahayu, I.S., Danu, S. 2015. Termite resistance of jabon wood impregnated with methyl methacrylate. Journal of Tropical Forest Science 27(1): 25-29.
  4. Hendrik, J., Hadi, Y.S., Massijaya, M.Y., Santoso, A. 2016. Properties of laminated panels made from fast-growing species glued with mangium tannin adhesive. BioResources 11(3): 5949-5960.
  5. Hermes, E. 2018. Unpack growth from global trade and e-commerce [internet]. [accessed June 28, 2018]. Available: http://www.eulerhermes.com/economic-research/sector-risks/Global-Paper-Report/Pages/default.aspx
  6. Hong, M.K., Park, B.D., Kim, K.H., Shim, K. 2017. Performance of Melamine-Urea-Formaldehyde Resin Adhesives at Various Melamine Contents for Bonding Glued Laminated Timber Under High Frequency Heating. Journal of the Korean Wood Science and Technology 45(4): 409-418. https://doi.org/10.5658/WOOD.2017.45.4.409
  7. Hoong, Y.B., Paridah, M.T., Loh, Y.F., Jalaluddin, H., Chuah, L.A. 2011. A new source of natural adhesive:Acacia mangium bark extracts co-polymerized with phenol-formaldehyde (PF) for bonding Mempisang (Annonaceae spp.) veneers. Journal International Adhesion and Adhesive 31(3): 164-167. https://doi.org/10.1016/j.ijadhadh.2010.12.002
  8. Hoong, Y.B., Paridah, M.T., Loh, Y.F., Koh, M.P., Luqman, C.A., Zaidon, A. 2012. Acacia mangium Tannin as Formaldehyde Scavenger for Low Molecular Weight Phenol-Formaldehyde Resin in Bonding Tropical Wood. Journal of Adhesion Science and Technology 24(8-10): 1653-1664. https://doi.org/10.1163/016942410X507740
  9. Japan Agricultural Standard. 2003. Glued laminated timber. JAS 234. Ministry of Agriculture, Forestry, and Fisheries, Tokyo, Japan.
  10. Lee, I.H., Hong, S.I. 2016. Bending and Bonding Strength Performances of Larix Block-glued Glulam. Journal of the Korean Wood Science and Technology 44(3): 315-322. https://doi.org/10.5658/WOOD.2016.44.3.315
  11. Lestari, A.S.R.D., Hadi, Y.S., Hermawan, D., Santoso, A. 2015. Glulam properties of fast-growing species using mahogany tannin adhesive. Bioresources 10(4): 7419-7433.
  12. Lestari, A.S.R.D., Hadi, Y.S., Hermawan, D., Santoso, A. 2018. Physical and mechanical properties of glued laminated lumber of pine (Pinus merkusii) and jabon (Anthocephalus cadamba). Journal of the Korean Wood Science and Technology 46(2): 143-148. https://doi.org/10.5658/WOOD.2018.46.2.143
  13. Panamgama, L.A. 2007. Polyphenolic extracts of Pinus radiata bark and networking mechanisms of additive-accelerated polycondensates. Journal Applied Polymer Science 103: 2487-2493. https://doi.org/10.1002/app.24466
  14. Park, B.D., Kang, E.C., Lee, S.M., Park, J.Y. 2016. Formaldehyde Emission of Wood-Based Composite Panels with Different Surface Lamination Materials Using Desiccator Method. Journal of the Korean Wood Science and Technology 44(4): 600-606. https://doi.org/10.5658/WOOD.2016.44.4.600
  15. Pizzi, A. 1983. Tannin-based wood adhesive. In: Wood Adhesive: Chemistry and Technology. M. Dekker, New York, NY, pp. 177-246.
  16. Santoso, A., Hadi, Y.S., Pizzi, A., Lagel, M.C. 2016. Characterization of merbau wood extract used as an adhesive in glued laminated lumber. Forest Products Journal 66(5/6): 313-318. https://doi.org/10.13073/FPJ-D-15-00080
  17. Song, Y.J., Hong, S.I. 2016. Evaluation of Bonding Strength of Larch Cross-Laminated Timber. Journal of the Korean Wood Science and Technology 44(4):607-615. https://doi.org/10.5658/WOOD.2016.44.4.607
  18. Valenzuela, J., Von Leyser, E.P., Pizzi, A., Westermeyer, C., Gorinni, B. 2012. Industrial production of pine tannin-bonded particleboard and MDF. European Journal Wood & Wood Production 70(5): 735-740. https://doi.org/10.1007/s00107-012-0610-2
  19. Vazquez, G., Freire, S., Gonzalez, J., Antorrena, G. 2000. Characterization of Pinus pinaster bark and alkaline extracts by diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy. Holz als Roh- und Werkstoff 58(1/2): 57-61. https://doi.org/10.1007/s001070050387
  20. Von Leyser, E.P., Pizzi, A. 1990. The formulation and commercialization of glulam pine tannin adhesives in Chile. Holz als Roh- und Werkstoff 48(1): 25-29. https://doi.org/10.1007/BF02607848
  21. Yazaki, Y., Collins, P.J. 1997. Uses of wattle extract:Tannin based adhesive. Rural Industries Research and Development Corporation RIRDC Publication 97/72, Chapter 15, pp. 127-143.