DOI QR코드

DOI QR Code

Blade shape optimization of centrifugal fan for improving performance and reducing aerodynamic noise of clothes dryer

의류 건조기 성능 향상과 공력소음 저감을 위한 원심팬의 날개 형상 최적화

  • Received : 2019.03.27
  • Accepted : 2019.05.13
  • Published : 2019.05.31

Abstract

The purpose of this study is paper is to improve the flow performance and to reduce the aerodynamic noise of air discharge system consisting of a centrifugal fan, ducts and a housing for the clothes dryer. Using computational fluid dynamics and acoustic analogy based on FW-H (Ffowcs-Williams and Hawkings) Eq., air flow field and acoustic fields of the air discharge system are investigated. To optimize aerodynamic performance and aerodynamic noise, the response surface method is employed. The two factors central composite design using the inflow and outflow angles of fan blades is adopted. The devised optimum design shows the reduction of turbulent kinetic energy in the ducts and the housing of the system, and as a result, the improved flow rate and reduce noise is confirmed. Finally, the experment using the proto-type manufactured usign the optimum design shows the increase of flow rate by 4.2 %.

본 연구의 목표는 의류 건조기용 원심팬과 덕트 및 하우징 등을 포함한 공기배출 시스템의 유량 성능 향상 및 공력소음을 저감하기 위한 것이다. 전산유체역학과 FW-H(Ffowcs-Williams and Hawkings) 방정식에 기초한 음향상사법을 이용하여 유동 및 소음 특성을 고찰하였다. 유량과 소음성능 최적화 설계를 위해 반응표면기법을 활용하였다. 설계 인자로 원심팬의 날개 입구각, 출구각을 고려한 2인자 중심합성계획법을 채택하였다. 도출된 최적설계안은 덕트와 하우징에서 감소된 난류에너지 분포를 나타냈으며 결과적으로 유량의 증가와 공력소음이 감소됨을 확인하였다. 최종적으로 최적설계안을 기초로 제작한 시제품에 대한 실험을 통하여 4.2 % 유량이 증가함을 확인하였다.

Keywords

GOHHBH_2019_v38n3_321_f0001.png 이미지

Fig. 1. Fan system of clothes dryer: fan, housing, inlet duct, and exhaust duct.

GOHHBH_2019_v38n3_321_f0002.png 이미지

Fig. 2. CAD model of target centrifugal fan.

GOHHBH_2019_v38n3_321_f0003.png 이미지

Fig. 3. Computational domain of fan system.

GOHHBH_2019_v38n3_321_f0004.png 이미지

Fig. 4. Integral surface for application of FW-H equation.

GOHHBH_2019_v38n3_321_f0005.png 이미지

Fig. 5. Schematics of flow rate experiment.

GOHHBH_2019_v38n3_321_f0006.png 이미지

Fig. 6. Optimization design factors.

GOHHBH_2019_v38n3_321_f0007.png 이미지

Fig. 7. Comparison of original & optimized fan blade.

GOHHBH_2019_v38n3_321_f0008.png 이미지

Fig. 8. Comparison of velocity magnitude.

GOHHBH_2019_v38n3_321_f0009.png 이미지

Fig. 9. Comparison of tangential-velocity.

GOHHBH_2019_v38n3_321_f0010.png 이미지

Fig. 10. Comparison of radial-velocity.

GOHHBH_2019_v38n3_321_f0011.png 이미지

Fig. 11. Comparison of sound pressure spectrum.

GOHHBH_2019_v38n3_321_f0012.png 이미지

Fig. 12. Turbulent kinetic energy of fan system.

GOHHBH_2019_v38n3_321_f0013.png 이미지

Fig. 13. Comparison of P-Q curve experiment.

Table 1. Blade inlet & outlet angle parameter.

GOHHBH_2019_v38n3_321_t0001.png 이미지

Table 2. Blade inlet & outlet angle parameter.

GOHHBH_2019_v38n3_321_t0002.png 이미지

References

  1. D. Shin, S. Ryu, C. Cheong, T. Kim, and J. Jung, "Development of High-performance/low-noise Centrifugal fan circulating cold air inside a household refrigerator by reduction of vortex flow" (in Korean), Trans. Korean Soc. Noise Vib. Eng., 26, 428-435 (2016). https://doi.org/10.5050/KSNVE.2016.26.4.428
  2. D. Shin, H. Heo, C. Cheong, T. Kim, and J. Jung, "Performance-noise optimization of centrifugal fan using response surface method" (in Korean), Trans. Korean Soc. Mech. Eng., 41, 165-172 (2017). https://doi.org/10.3795/KSME-A.2017.41.3.165
  3. S. Ryu, S. Kim, C. Cheong, and J. Kim, "Optimization of flow performance by designing orifice shape of outdoor unit of air-conditioner" (in Korean), J. Acoust. Soc. Kr. 36, 371-377 (2017).
  4. J. Kim, S. Ryu, C. Cheong, D. Jang, and M. An, "Development of high performance and low noise compact centrifugal fan for cooling automotive seats" (in Korean), J. Acoust. Soc. Kr. 37, 396-403 (2018).
  5. S. Lee, S. Heo, C. Cheong, S. Kim, and M. Seo, "Computation of internal BPF noise of axial circulating fan in refrigerators" (in Korean), Trans. Korean Soc. Noise Vib. Eng, 19, 454-461 (2009). https://doi.org/10.5050/KSNVN.2009.19.5.454
  6. S. Heo, D. Kim, and C. Cheong, "Broadband noise prediction of the ice-maker centrifugal fan in a refrigerator using hybrid CAA method and FRPM technique" (in Korean), J. Acoust. Soc. Kr. 31, 391-398 (2012). https://doi.org/10.7776/ASK.2012.31.6.391
  7. P. B. Frank, Fan Handbook (McGraw-Hill, Inc, New York, 1998), pp. 7.1-7.58.