DOI QR코드

DOI QR Code

Effect of Vinylene Carbonate as an Electrolyte Additive on the Electrochemical Properties of Micro-Patterned Lithium Metal Anode

미세 패턴화된 리튬금속 전극의 Vinylene Carbonate 첨가제 도입에 따른 전기화학 특성에 관한 연구

  • Jin, Dahee (Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Park, Joonam (Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Dzakpasu, Cyril Bubu (Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Yoon, Byeolhee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ryou, Myung-Hyun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Yong Min (Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 진다희 (대구경북과학기술원에너지공학전공) ;
  • 박주남 (대구경북과학기술원에너지공학전공) ;
  • ;
  • 윤별희 (한밭대학교화학생명공학과) ;
  • 유명현 (한밭대학교화학생명공학과) ;
  • 이용민 (대구경북과학기술원에너지공학전공)
  • Received : 2019.05.15
  • Accepted : 2019.05.21
  • Published : 2019.05.31

Abstract

Lithium metal anode with the highest theoretical capacity to replace graphite anodes are being reviewed. However, the dendrite growth during repeated oxidation/reduction reaction on lithium metal surface, which results in poor cycle performance and safety issue has hindered its successful implementation. In our previous work, we solved this problem by using surface modification technique whereby a surface pattern on lithium metal anode is introduced. Although the micro-patterned Lithium metal electrode is beneficial to control Li metal deposition efficiently, it is difficult to control the mossy-like Li granulation at high current density ($>2.0mA\;cm^{-2}$). In this study, we introduce vinylene carbonate (VC) electrolyte additive on micro patterned lithium metal anode to suppress the lithium dendrite growth. Owing to the synergetic effect of micro-patterned lithium metal anode and VC electrolyte additive, lithium dendrite at a high current density is dense. As a result, we confirmed that the cycle performance was further improved about 6 times as compared with the reference electrode.

리튬 금속 음극은 낮은 환원 전위, 고에너지 밀도로 인해 흑연을 대체할 차세대 음극재로 재조명 받고 있다. 하지만, 충방전시 리튬 금속 표면에서의 반복적인 산화/환원 반응에 의해 리튬 덴드라이트가 형성되며 이로 인해 수명특성이 급격하게 저하되고 더 나아가 내부 단락(Internal Short-circuit)과 같은 안전성 문제로 인해 상용화되기에는 어려운 실정이다. 이를 해결하기 위해 본 연구 그룹에서는 리튬 금속에 미세 패턴을 형성하여 전류 밀도를 제어함으로써 덴드라이트 형성을 제어하였으나, 고전류밀도에서는 리튬 덴드라이트의 형성을 완벽하게 제어할 수는 없었다. 본 연구에서는 미세 패턴화된 리튬 금속 전극에 전해질 첨가제 Vinylene Carbonate(VC)를 도입하여 고율 충방전 시 미세 패턴화된 리튬 금속 전극의 덴드라이트 형성 억제를 극대화하고자 하였다. 미세 패턴화된 리튬 금속 전극과 VC 첨가제의 시너지 효과로 인해 높은 전류 밀도에서의 리튬 덴드라이트가 비교적 치밀하게 형성되는 것을 확인할 수 있었다. 이로 인해 300사이클 동안 88.3%의 용량유지율을 보였으며, 기존의 미세 패턴화된 리튬 금속 전극에 대비하여 수명특성이 약 6배 이상 향상된 것을 확인할 수 있었다.

Keywords

JHHHB@_2019_v22n2_69_f0001.png 이미지

Fig. 1. (a) Optic images and (b, c) 3D mapping image of 2 cm × 2 cm stainless-steel stamp by using digital microscope.

JHHHB@_2019_v22n2_69_f0002.png 이미지

Fig. 2. Potential profiles of Li/Li symmetrical cells during galvanostatic cycling [+0.5 mA cm-2 (30 min) → Rest (10min) → -0.5 mA cm-2 (30 min) → Rest (10min)].

JHHHB@_2019_v22n2_69_f0003.png 이미지

Fig. 3. SEM images of (a, b, c) Reference, (d, e, f) 5 wt% VC with Micro-Patterned Lithium anode after plating with a current density of 2 mA cm -2.

JHHHB@_2019_v22n2_69_f0004.png 이미지

Fig. 4. Voltage profiles of Li (Ni0.6Co0.2Mn0.2)O2 electrodes (a) without VC and (b) with VC electrolyte additive during precycling.

JHHHB@_2019_v22n2_69_f0005.png 이미지

Fig. 5. SEM images of (a, c) Reference and (b, d) 5 wt% VC with Micro-patterned lithium metal electrodes after precycling.

JHHHB@_2019_v22n2_69_f0006.png 이미지

Fig. 6. C 1s XPS spectra of the micro-patterned lithium metal anodes (a) without and (b) with VC after precycling.

JHHHB@_2019_v22n2_69_f0007.png 이미지

Fig. 7. Electrochemical performance of NCM622/Li cells employing Micro-patterned Lithium metal electrodes with and without VC electrolyte additive (a) Comparison of the discharge capacities of the cells at different discharge rates from 0.5C (0.792 mA cm-2) to 15C (23.76 mA cm-2) while keeping the charge rate constant at 0.5C (0.792 mA cm-2). (b) Cycling performance measured at a rate of 1C (1.584 mA cm-2) between 3.0 V and 4.3 V (vs. Li/Li+) (c) Columbic efficiencies of unit cells relevant to Fig. 7b.

Table 1. HOMO and LUMO energy levels of ethylene carbonate(EC), ethyl methyl carbonate(EMC) and, vinylene carbonate(VC), and their reduction potentials.

JHHHB@_2019_v22n2_69_t0001.png 이미지

References

  1. M. Armand and J.-M. Tarascon, Building better batteries, Nature 451, 652, (2008). https://doi.org/10.1038/451652a
  2. H. Xiang, P. Shi, P. Bhattacharya, X. Chen, D. Mei, M. E. Bowden, J. Zheng, J.-G. Zhang and W. J. J. o. P. S. Xu, Enhanced charging capability of lithium metal batteries based on lithium bis (trifluoromethanesulfonyl) imide-lithium bis (oxalato) borate dual-salt electrolytes, Jornal of Power Sources 318, 170-177, (2016). https://doi.org/10.1016/j.jpowsour.2016.04.017
  3. L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles, Journal of power sources 226, 272-288, (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
  4. J.-M. Tarascon and M. Armand, in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific 2011, p. 171-179.
  5. Q. Hu, The renaissance of lithium metal: SolidEnergy's role in the future of lithium batteries, Nature 526, 4-10, (2015).
  6. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environmental Science 7, 513-537, (2014). https://doi.org/10.1039/C3EE40795K
  7. D. Lin, Y. Liu and Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature nanotechnology 12, 194, (2017). https://doi.org/10.1038/nnano.2017.16
  8. X. B. Cheng, R. Zhang, C. Z. Zhao, F. Wei, J. G. Zhang and Q. Zhang, A review of solid electrolyte interphases on lithium metal anode, Advanced Sicence 3, 1500213, (2016).
  9. P. Verma, P. Maire and P. Novak, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta 55, 6332-6341, (2010). https://doi.org/10.1016/j.electacta.2010.05.072
  10. Z. Li, J. Huang, B. Y. Liaw, V. Metzler and J. Zhang, A review of lithium deposition in lithium-ion and lithium metal secondary batteries, Journal of power sources 254, 168-182, (2014). https://doi.org/10.1016/j.jpowsour.2013.12.099
  11. K. N. Wood, E. Kazyak, A. F. Chadwick, K.-H. Chen, J.-G. Zhang, K. Thornton and N. P. Dasgupta, Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy, ACS central science 2, 790-801, (2016). https://doi.org/10.1021/acscentsci.6b00260
  12. H. Ota, K. Shima, M. Ue and J.-i. Yamaki, Effect of vinylene carbonate as additive to electrolyte for lithium metal anode, Electrochimica Acta 49, 565-572, (2004). https://doi.org/10.1016/j.electacta.2003.09.010
  13. J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang and W. Xu, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nature Energy 2, 17012, (2017). https://doi.org/10.1038/nenergy.2017.12
  14. L. Suo, W. Xue, M. Gobet, S. G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li and J. Li, Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries, Proceedings of the National Academy of Sciences 115, 1156-1161, (2018). https://doi.org/10.1073/pnas.1712895115
  15. S. Jiao, X. Ren, R. Cao, M. H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao and Q. Li, Stable cycling of high-voltage lithium metal batteries in ether electrolytes, Nature Energy 3, 739, (2018). https://doi.org/10.1038/s41560-018-0199-8
  16. X. B. Cheng, T. Z. Hou, R. Zhang, H. J. Peng, C. Z. Zhao, J. Q. Huang and Q. Zhang, Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Advanced Materials 28, 2888-2895, (2016). https://doi.org/10.1002/adma.201506124
  17. H. Jo, D. Song, Y.-C. Jeong, Y. M. Lee and M.-H. Ryou, Study on dead-Li suppression mechanism of Li-hosting vapor-grown-carbon-nanofiber-based protective layer for Li metal anodes, Journal of power sources 409, 132-138, (2019). https://doi.org/10.1016/j.jpowsour.2018.09.059
  18. H. Lee, J. Song, Y.-J. Kim, J.-K. Park and H.-T. Kim, Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries, Scientific reports 6, 30830, (2016). https://doi.org/10.1038/srep30830
  19. Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan and Y. Cui, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nature communications 7, 10992, (2016). https://doi.org/10.1038/ncomms10992
  20. W. Liu, D. Lin, A. Pei and Y. Cui, Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement, Journal of the American Chemical Society 138, 15443-15450, (2016). https://doi.org/10.1021/jacs.6b08730
  21. W.-K. Shin, A. G. Kannan and D.-W. Kim, Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries, ACS applied materials & interfaces 7, 23700-23707, (2015). https://doi.org/10.1021/acsami.5b07730
  22. M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park and J. W. Choi, Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators, Advanced Energy Materials 2, 645-650, (2012). https://doi.org/10.1002/aenm.201100687
  23. H. Jeon, S. Y. Jin, W. H. Park, H. Lee, H.-T. Kim, M.-H. Ryou and Y. M. Lee, Plasma-assisted water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium metal secondary batteries, Electrochimica Acta 212, 649-656, (2016). https://doi.org/10.1016/j.electacta.2016.06.172
  24. H. Lee, X. Ren, C. Niu, L. Yu, M. H. Engelhard, I. Cho, M. H. Ryou, H. S. Jin, H. T. Kim and J. Liu, Suppressing lithium dendrite growth by metallic coating on a separator, Advanced Functional Materials 27, 1704391, (2017). https://doi.org/10.1002/adfm.201704391
  25. W. Luo, L. Zhou, K. Fu, Z. Yang, J. Wan, M. Manno, Y. Yao, H. Zhu, B. Yang and L. Hu, A thermally conductive separator for stable Li metal anodes, Nano letters 15, 6149-6154, (2015). https://doi.org/10.1021/acs.nanolett.5b02432
  26. J. Park, J. Jeong, Y. Lee, M. Oh, M. H. Ryou and Y. M. Lee, Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries, Advanced Materials Interfaces 3, 1600140, (2016). https://doi.org/10.1002/admi.201600140
  27. S. Kim, J. Park, A. Friesen, H. Lee, Y. M. Lee and M.-H. Ryou, Composite protection layers for dendrite-suppressing non-granular micro-patterned lithium metal anodes, Electrochimica Acta 282, 343-350, (2018). https://doi.org/10.1016/j.electacta.2018.05.102
  28. J. Heine, S. Krüger, C. Hartnig, U. Wietelmann, M. Winter and P. Bieker, Coated Lithium Powder (CLiP) Electrodes for Lithium-Metal Batteries, Advanced Energy Materials 4, 1300815, (2014). https://doi.org/10.1002/aenm.201300815
  29. M. H. Ryou, Y. M. Lee, Y. Lee, M. Winter and P. Bieker, Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating, Advanced Energy Materials 25, 834-841, (2015).
  30. D. Jin, J. Oh, A. Friesen, K. Kim, T. Jo, Y. M. Lee and M.-H. Ryou, Self-Healing Wide and Thin Li Metal Anodes Prepared Using Calendared Li Metal Powder for Improving Cycle Life and Rate Capability, ACS applied materials & interfaces 10, 16521-16530, (2018). https://doi.org/10.1021/acsami.8b02740
  31. J. Park, D. Kim, D. Jin, C. Phatak, K. Y. Cho, Y.-G. Lee, S. Hong, M.-H. Ryou and Y. M. Lee, Size effects of micro-pattern on lithium metal surface on the electrochemical performance of lithium metal secondary batteries, Journal of power sources 408, 136-142, (2018). https://doi.org/10.1016/j.jpowsour.2018.09.061
  32. Y. J. Kim, H. S. Jin, D. H. Lee, J. Choi, W. Jo, H. Noh, J. Lee, H. Chu, H. Kwack and F. Ye, Guided Lithium Deposition by Surface Micro-Patterning of Lithium-Metal Electrodes, ChemElectroChem 5, 3169-3175, (2018). https://doi.org/10.1002/celc.201800694
  33. K. N. Wood, M. Noked and N. P. Dasgupta, Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior, ACS Energy Letters 2, 664-672, (2017). https://doi.org/10.1021/acsenergylett.6b00650
  34. W. Li, H. Zheng, G. Chu, F. Luo, J. Zheng, D. Xiao, X. Li, L. Gu, H. Li and X. Wei, Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation, Faraday discussions 176, 109-124, (2015). https://doi.org/10.1039/c4fd00124a
  35. K. Abe, H. Yoshitake, T. Kitakura, T. Hattori, H. Wang and M. Yoshio, Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries, Electrochimica Acta 49, 4613-4622, (2004). https://doi.org/10.1016/j.electacta.2004.05.016
  36. J. Guo, Z. Wen, M. Wu, J. Jin and Y. J. E. C. Liu, Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode, Electrochemistry Communications 51, 59-63, (2015). https://doi.org/10.1016/j.elecom.2014.12.008
  37. X.-G. Sun and S. Dai, Electrochemical investigations of ionic liquids with vinylene carbonate for applications in rechargeable lithium ion batteries, Electrochimica Acta 55, 4618-4626, (2010). https://doi.org/10.1016/j.electacta.2010.03.019
  38. I. A. Profatilova, C. Stock, A. Schmitz, S. Passerini and M. Winter, Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate, Journal of power sources 222, 140-149, (2013). https://doi.org/10.1016/j.jpowsour.2012.08.066
  39. D. Xiong, J. Burns, A. Smith, N. Sinha and J. Dahn, A high precision study of the effect of vinylene carbonate (VC) additive in Li/graphite cells, Journal of The Electrochemical Society 158, A1431-A1435, (2011). https://doi.org/10.1149/2.100112jes
  40. X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan and Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Advanced Functional Materials 27, 1605989, (2017). https://doi.org/10.1002/adfm.201605989
  41. M.-H. Ryou, G.-B. Han, Y. M. Lee, J.-N. Lee, D. J. Lee, Y. O. Yoon and J.-K. Park, Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells, Electrochimica Acta 55, 2073-2077, (2010). https://doi.org/10.1016/j.electacta.2009.11.036
  42. J. Heine, P. Hilbig, X. Qi, P. Niehoff, M. Winter and P. Bieker, Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries, Journal of The Electrochemical Society 162, A1094-A1101, (2015). https://doi.org/10.1149/2.0011507jes
  43. J.-H. Song, J.-T. Yeon, J.-Y. Jang, J.-G. Han, S.-M. Lee and N.-S. Choi, Effect of fluoroethylene carbonate on electrochemical performances of lithium electrodes and lithium-sulfur batteries, Journal of The Electrochemical Society 160, A873-A881, (2013). https://doi.org/10.1149/2.101306jes
  44. E. Markevich, G. Salitra, F. Chesneau, M. Schmidt and D. Aurbach, Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution, ACS Energy Letters 2, 1321-1326, (2017). https://doi.org/10.1021/acsenergylett.7b00300
  45. G.-B. Han, J.-N. Lee, D. J. Lee, H. Lee, J. Song, H. Lee, M.-H. Ryou, J.-K. Park and Y. M. Lee, Enhanced cycling performance of lithium metal secondary batteries with succinic anhydride as an electrolyte additive, Electrochimica Acta 115, 525-530, (2014). https://doi.org/10.1016/j.electacta.2013.11.015
  46. M.-H. Ryou, J.-N. Lee, D. J. Lee, W.-K. Kim, J. W. Choi, J.-K. Park and Y. M. Lee, 2-(triphenylphosphoranylidene) succinic anhydride as a new electrolyte additive to improve high temperature cycle performance of LiMn2O4/graphite Li-ion batteries, Electrochimica Acta 102, 97-103, (2013). https://doi.org/10.1016/j.electacta.2013.03.129
  47. Y. Li, G. Xu, Y. Yao, L. Xue, S. Zhang, Y. Lu, O. Toprakci and X. Zhang, Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive, Journal of Solid State Electrochemistry 17, 1393-1399, (2013). https://doi.org/10.1007/s10008-013-2005-7
  48. J. Jeong, J.-N. Lee, J.-K. Park, M.-H. Ryou and Y. M. Lee, Stabilizing effect of 2-(triphenylphosphoranylidene) succinic anhydride as electrolyte additive on the lithium metal of lithium metal secondary batteries, Electrochimica Acta 170, 353-359, (2015). https://doi.org/10.1016/j.electacta.2015.04.168
  49. L. El Ouatani, R. Dedryvere, C. Siret, P. Biensan, S. Reynaud, P. Iratcabal and D. Gonbeau, The effect of vinylene carbonate additive on surface film formation on both electrodes in Li-ion batteries, Journal of The Electrochemical Society 156, A103-A113, (2009). https://doi.org/10.1149/1.3029674
  50. Y. Wang, S. Nakamura, K. Tasaki and P. B. Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive?, Journal of the American Chemical Society 124, 4408-4421, (2002). https://doi.org/10.1021/ja017073i
  51. C. C. Nguyen and B. L. Lucht, Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries, Chemistry of Materials 161, A1933-A1938, (2014).
  52. F. A. Soto, Y. Ma, J. M. Martinez de la Hoz, J. M. Seminario and P. B. Balbuena, Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries, Chemistry of Materials 27, 7990-8000, (2015). https://doi.org/10.1021/acs.chemmater.5b03358
  53. A. L. Michan, B. S. Parimalam, M. Leskes, R. N. Kerber, T. Yoon, C. P. Grey and B. L. Lucht, Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation, Chemistry of Materials 28, 8149-8159, (2016). https://doi.org/10.1021/acs.chemmater.6b02282
  54. X. Zhang, R. Kostecki, T. J. Richardson, J. K. Pugh and P. N. Ross, Electrochemical and infrared studies of the reduction of organic carbonates, Journal of The Electrochemical Society 148, A1341-A1345, (2001). https://doi.org/10.1149/1.1415547
  55. Y.-K. Han, Y. Moon, K. Lee and Y. S. Huh, Computational screening of lactam molecules as solid electrolyte interphase forming additives in lithium-ion batteries, Current Applied Physics 14, 897-900, (2014). https://doi.org/10.1016/j.cap.2014.04.006