DOI QR코드

DOI QR Code

Comparative assessment of urban stormwater low impact strategies equipped with pre-treatment zones

침강지 시설이 조성된 LID 시설의 환경적 영향평가

  • Yano, K.A.V. (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Reyes, N.J.D.G. (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Jeon, M.S. (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Kim, L.H. (Department of Civil and Environmental Engineering, Kongju National University)
  • ;
  • ;
  • 전민수 (공주대학교 건설환경공학과) ;
  • 김이형 (공주대학교 건설환경공학과)
  • Received : 2019.04.24
  • Accepted : 2019.05.21
  • Published : 2019.05.31

Abstract

Recently, Low impact development techniques, a form of nature-based solutions (NBS), were seen cost-efficient alternatives that can be utilized as alternatives for conventional stormwater management practices. This study evaluated the effectiveness of an infiltration trench (IT) and a small constructed wetland (SCW) in treating urban stormwater runoff. Long-term monitoring data were observed to assess the seasonal performance and cite the advantages and disadvantages of utilizing the facilities. Analyses revealed that the IT has reduced performance during the summer season due to higher runoff volumes that exceeded the facility's storage volume capacity and caused the facility to overflow. On the other hand, the pollutant removal efficiency of the SCW was impacted by the winter season as a result of dormant biological activities. Sediment data also indicated that fine and medium sand particles mostly constituted the trapped sediments in the pretreatment and media zones. Sediments in SCW exhibited a lower COD and TN load due to the phytoremediation and microbiological degradation capabilities of the system. This study presented brief comparison LID facilities equipped with pre-treatment zones. The identified factors that can potentially affect the performance of the systems were also beneficial in establishing metrics on the utilization of similar types of nature-based stormwater management practices.

최근 강우유출수를 비용효율적으로 관리하기 위해 저영향개발 (Low Impact Development, LID)과 자연기반해법(Nature-based solution, NBS)를 도입하고 있다. 본 연구에서는 LID 시설 중 도심지 내 적용가능하고 유입부에 침강지가 조성된 침투도랑(IT)과 소규모 인공습지(SCW) 등 2개의 시설에 대해 효율성을 평가하였다. 효율성 평가는 장기간의 모니터링을 통한 자료를 이용하여 수행하였다. 분석결과 하절기 기간은 식생의 흡입 등의 생물학적 활동으로 인하여 SCW의 효율이 더 높았으나, 동절기 기간에는 식물의 고사로 인하여 IT의 효율이 더 높은것으로 분석되었다. 침강지 내 퇴적물의 분석결과 SCW 침강지 내 식생에 의한 정화작용 및 미생물등의 생물학적 처리기작으로 인하여 COD와 TN의 저감효율이 높은것으로 분석되었다. 본 연구에서는 침강지 시설을 조성한 LID 시설에 대해 비교하였으며, 자연과 유사한 자연기반해법을 LID 시설에 적용할 경우 기존 시설보다 처리효율이 우수한것으로 나타났다.

Keywords

HKSJBV_2019_v21n2_181_f0001.png 이미지

Fig. 1. Schematic diagram of the a) IT located and b) SCW located at Kongju National University

HKSJBV_2019_v21n2_181_f0002.png 이미지

Fig. 2. Box plot definition.

HKSJBV_2019_v21n2_181_f0003.png 이미지

Fig. 3. Background inflow and outflow pollutant concentrations in the IT and SCW.

HKSJBV_2019_v21n2_181_f0004.png 이미지

Fig. 4. Seasonal inflow and outflow unit pollutant loads in the a) IT and b) SCW.

HKSJBV_2019_v21n2_181_f0005.png 이미지

Fig. 5. Particle size distribution and sedimentation rate in the a) IT and b) SCW.

HKSJBV_2019_v21n2_181_f0006.png 이미지

Fig. 6. Mean pollutant load distribution in the a) IT and b) SCW sediments

HKSJBV_2019_v21n2_181_f0007.png 이미지

Fig. 7. Comparison between mean sediment and influent stormwater pollutant loads in the a) IT and b) SCW

Table 1. Facility design and catchment area characteristics

HKSJBV_2019_v21n2_181_t0001.png 이미지

Table 2. Summary of monitored rainfall events

HKSJBV_2019_v21n2_181_t0002.png 이미지

References

  1. Ali, H., Khan, E., & Sajad, M. (2013). Phytoremediation of heavt metals - Concepts and applications. Chemosphere, 869-881. doi:10.1016/j.chemosphere.2013.01.075
  2. Alias, N., Liu, A., Goonetilleke, A., & Egodawatta, P. (2014). Time as the critical factor in the investigation of the relationship between pollutant wash-off and rainfall characteristics. Ecological engineering, 301-305. doi:10.1016/j.ecoleng.2014.01.008
  3. Alihan J. C., Flores, P.E., Geronimo, F.K. F., Kim, L.H. (2018). Evaluation of a small HSSF constructed wetland in treating stormwater runoff using SWMM. Desalination and water treatment, 123-129. doi: 10.5004/dwt.2018.21823
  4. American Public Health Association; American Waterworks Association; Water Environment Federation. (1992). Standard Methods for the Examination of Water and Wastewater. Washington DC: American Public Health Association.
  5. Carter, M., & Gregorich, E. (2006). Spoil Sampling and Methods of Analysis. Boca Raton: CRC Press.
  6. Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science. doi:10.1155/2014/752708
  7. Choi, J., Lee, O., Lee, J., & Kim, S. (2019). Estimation of stormwater interception ratio for evaluating LID facilities performance in Korea. Membrane and Water Treatment, 19-28. doi:10.12989/mwt.2019.10.1.019
  8. Farraji, H., Zaman, N. Q., Tajuddin, R. M., & Faraji, H. (2016). Advantages and disadvantages of phytoremediation: A concise review. Int J Env Tech Sci, 69-75.
  9. Gill, L. W., Ring, P., Higgins, N. M., & Johnston, P. M. (2014). Accumulation of heavy metals in a constructed wetland treating road runoff. Ecological Engineering, 133-139. doi:10.1016/j.ecoleng.2014.03.056
  10. Guerra, H. B., Yu, J., & Kim, Y. (2018). Variation of Flow and Filtration Mechanisms in an Infiltration Trench. Journal of Wetlands Research, 63-71. doi: 10.17663/JWR.2018.20.1.063
  11. Guo, Y. & Gao, T. (2016). Analytical equations for estimating the total runoff reduction efficiency of infiltration trenches. Journal of Sustainable Water in Built Environment, 06016001. doi:10.1061/jswbay.0000809
  12. Hamel, P., Daly, E., & Fletcher, T. D. (2013). Source-control stormwater management for mitigating the mpacts of urbanisation on baseflow: A review. Journal of Hydrology, 201-211. doi:10.1016/j.jhydrol.2013.01.001
  13. Houle, J. J., Roseen, R. M., & Ballestero, T. P. (2013). Comparison of Maintenance Cost, Labor Demands, and System Performance for LID and Conventional Stormwater Management. Journal of Environmental Engineering, 932-938. doi:10.1061/(ASCE)EE.1943-7870.0000698
  14. International Union for Conservation of Nature. (n.d.). IUCN, International Union for Conservation of Nature. Retrieved July 19, 2018, from IUCN, International Union for Conservation of Nature: https://www.iucn.org/
  15. Jeelani, N., Yang, W., Xu, L., Qiao, Y., An, S., & Leng, X. (2017). Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Scientific reports, 8028. doi:10.1038/s41598-017-07831-3
  16. Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., et al. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment, 997-1009. doi:10.1016/j.scitotenv.2017.08.077
  17. Kim, L. H., Kang, H. M., & Bae, W. (2010). Treatment of particulates and metals from highway stormwater runoff using zeolite filtration. Desalination and Water Treatment, 97-104. doi: 10.5004/dwt.2010.1901
  18. Kumar, M., Furumai, H., Kurisu, F., & Kasuga, I. (2013). Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma, 8-17. doi:10.1016/j.geoderma.2013.07.004
  19. Li, D., Wan, J., Ma, Y., Wang, Y., Huang, M., & Chen, Y. (2015). Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City. PloS ONE. doi:10.1371/journal.pone.0118776
  20. Li, H. (2015). Green Infrastructure for Highway Stormwater Management: Field Investigation for Future Design, Maintenance, and Management Needs. Journal of Infrastructure Systems, 05015001. doi:10.1061/(ASCE)IS.1943-555X.0000248
  21. Li, Y. C., Zhang, D. Q., & Wang, M. (2017). Performance Evaluation of a Full-Scale Constructed Wetland for Treating Stormwater Runoff. CLEAN-Soil, Air, Water, 1600740. doi:10.1002/clen.201600740
  22. Liu, J., Sample, D. J., Bell, C., & Yuntao, G. (2014). Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water, 1069-1099. doi: 10.3390/w6041069
  23. Loganathan, P., Vigneswaran, S., & Kandasamy, J. (2013). Road-deposited sediment pollutants: a critical review of their characteristics, source apportionment, and management. Critical reviews in environmental science and technology, 1315-1348. doi:10.1080/10643389.2011.644222
  24. Ma, Y., Egodawatta, P., McGree, P., Liu, J., & Goonetilleke, A. (2016). Human health risk assessment of heavy metals in urban stormwater. Science of the Total Environment, 764-772. doi:10.1016/j.scitotenv.2016.03.067
  25. Mangangka, I. R., Liu, A., Egodawatta, P., & Goonetilleke, A. (2015). Sectional analysis of stormwater treatment performance of a constructed wetland. Ecological Engineering, 172-179. doi:10.1016/j.ecoleng.2015.01.028
  26. Maniquiz, M. C. (2012). Low Impact Development (LID) Technology for Urban Stormwater Runoff Treatment - Monitoring, Performance, and Design. Cheonan: Kongju National University.
  27. Maniquiz-Redillas, M. C., & Kim, L.-H. (2016). Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environmental Technology, 2265-2272. doi:10.1080/09593330.2016.1147610
  28. Mercado, J. M., Maniquiz-Redillas, M. C., & Kim, L.-H. (2015). Laboratory study on the clogging potential of a hybrid best management practice. Desalination and Water Treatment, 3126-3133. doi:10.1080/19443994.2014.922287
  29. Roseen, R. M., Ballestero, T. P., Houle, J. J., & Pedro, A. (2009). Seasonal Perofirmance Variations for Storm-Water Management Systems in Cold Climate Conditions. Journal of Environmental Engineering, 128-137. doi:10.1061/(ASCE)0733-9372(2009)135:3(128)
  30. Segismundo, E. Q., Lee, B.-S., Kim, L.-H., & Koo, B.-H. (2016). Evaluation of the Impact of Filter Media Depth on Filtration Performance and Clogging Formation of a Stormwater Sand Filter. Journal of Korean Society on Water Environment, 36-45. doi:10.15681/KSWE.2016.32.1.36
  31. Sidhu, J. P., Ahmed, W., Gernjak, W., Aryal, R., McCarthy, D., Palmer, A., et al. (2013). Sewage pollution in urban stormwater runoff as evident from thewidespread presence of multiple microbial and chemical source tracking markers. Science of Total Environment, 488-496. doi:10.1016/j.scitotenv.2013.06.020
  32. Sun, H., Wang, Z., Gao, P., & Peng, L. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta physiologiae plantarum, 355-364. doi:10.1007/s11738-012-1078-8
  33. USEPA. (1999). Stormwater Technology Fact Sheet: Infiltration Trench. Washington, D.C.: USEPA.
  34. Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering, 582-592. doi: 10.1016/j.ecoleng.2013.06.023
  35. Wijesiri, B., Egodawatta, P., McGree, J., & Goonetilleke, A. (2016). Understanding the uncertainty associated with particle-bound pollutant build-up and wash-off: A critical review. Water Research, 582-596. doi:10.1016/j.watres.2016.06.013
  36. Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., et al. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 594-601. doi:10.1016/j.biortech.2014.10.068
  37. Yiping, G., & Gao, T. (2016). Analytical Equations for Estimating the Total Runoff Reduction Efficiency of Infiltration Trenches. Journal of Sustainable Water in the Built Environment, 06016001. doi: 10.1061/JSWBAY.0000809
  38. Yuan, Q., & Kim, Y. (2018). Analysis of the particulate matters in the vertical-flow woodchip wetland. Journal of Wetlands Research, 145-154. doi: 10.17663/JWR.2018.20.2.145
  39. Zahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., & Goharian, E. (2014). Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff: Case Study of New York City. Journal of Irrigation and Drainage Engineering, 04014043. doi: 10.1061/(ASCE)IR.1943-4774.0000770
  40. Zhao, Y., Liu, B., Zhang, W., Weijing, K., Hu, C., & An, S. (2009). Comparison of the Treatment Performances of High-strength Wastewater in Vertical Subsurface Flow Constructed Wetlands Planted with Acorus calamus and Lythrum salicaria. Journal of Health Science, 757-766. doi: 10.1248/jhs.55.757
  41. Zhu, H., Yan, B., Xu, Y., Jiunian, G., & Shuyuan, L. (2014). Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecological Engineering, 58-63. doi: 10.1016/j.ecoleng.2013.12.018