DOI QR코드

DOI QR Code

A Study on Inflation Performance Analysis and Test of A Wearable Airbag for Bikers

자전거 탑승자용 웨어러블 에어백의 팽창성능 해석 및 시험에 관한 연구

  • Kim, Hyun Sik (Department of Mechanical Design Engineering, Pukyong National University) ;
  • Byun, Gi Sik (Department of Control and Instrumentation Engineering, Pukyong National University) ;
  • Baek, Woon Kyung (Department of Mechanical Design Engineering, Pukyong National University)
  • 김현식 (부경대학교 기계설계공학과) ;
  • 변기식 (부경대학교 제어계측공학과) ;
  • 백운경 (부경대학교 기계설계공학과)
  • Received : 2019.04.06
  • Accepted : 2019.04.24
  • Published : 2019.04.30

Abstract

Bikers can be subjected to accidents during their bicycling. Helmets are only good, if any, for their head protection. A wearable airbag can protect the human neck area if it is properly designed. This airbag system is composed of an inflater and an airbag. The inflater contains a pressurized gas cylinder and a piercing device. The airbag is an inflatable fabric surrounding the human neck. When a bicycle accident happens, a sensor captures the motion of the biker and a microcomputer sends a signal to open a valve in the inflator to supply the pressurized gas to the airbag. An important issue of this system is that the airbag should be quickly inflated to protect the human neck. This paper deals with the airbag inflation time simulation and some issues to design a wearable airbag system. Also, a prototype was tested to show its feasibility using a human dummy mounted on a running cart.

Keywords

HOJHB0_2019_v34n2_22_f0001.png 이미지

Fig. 1. System concept diagram of the wearable airbag system.

HOJHB0_2019_v34n2_22_f0002.png 이미지

Fig. 2. A prototype of the automatic gas inflator.

HOJHB0_2019_v34n2_22_f0003.png 이미지

Fig. 3. Section view of the automatic gas inflator.

HOJHB0_2019_v34n2_22_f0004.png 이미지

Fig. 4. Motion sensing module.

HOJHB0_2019_v34n2_22_f0005.png 이미지

Fig. 5. Inflator actuation module.

HOJHB0_2019_v34n2_22_f0006.png 이미지

Fig. 6. 3-D model and a prototype of the airbag.

HOJHB0_2019_v34n2_22_f0007.png 이미지

Fig. 7. Flow chart for the airbag inflation time computation.

HOJHB0_2019_v34n2_22_f0008.png 이미지

Fig. 8. Gas pressure changes in the airbag.

HOJHB0_2019_v34n2_22_f0009.png 이미지

Fig. 9. Gas pressure changes in the cylinder.

HOJHB0_2019_v34n2_22_f0010.png 이미지

Fig. 10. Location of the motion data acquisition module.

HOJHB0_2019_v34n2_22_f0011.png 이미지

Fig. 11. Motion data acquisition using a dummy test.

HOJHB0_2019_v34n2_22_f0012.png 이미지

Fig. 12. Acc- & Gyro – data from front collision test.

HOJHB0_2019_v34n2_22_f0013.png 이미지

Fig. 13. Acc- & Gyro- data from rear collision test.

HOJHB0_2019_v34n2_22_f0014.png 이미지

Fig. 14. Acc- & Gyro- data from side collision test.

HOJHB0_2019_v34n2_22_f0015.png 이미지

Fig. 15. Airbag performance test.

HOJHB0_2019_v34n2_22_f0016.png 이미지

Fig. 16. Acc - & Gyro- data from airbag performance test.

Table 1. Simulation conditions for the airbag and the gas cylinder

HOJHB0_2019_v34n2_22_t0001.png 이미지

Table 2. Acceleration & Gyro data from front, rear, side collision tests

HOJHB0_2019_v34n2_22_t0002.png 이미지

References

  1. G. Shi, C. S. Chan, W. J. Li, K. S. Leung, Y. Zou and Y. Jin, "Mobile Human Airbag System for Fall Protection Using MEMS Sensors and Embedded SVM Classifier", Institute of Electrical and Electronics Engineers (IEEE) Sensors Journal. Vol. 9, No. 5, pp. 495-503, 2009.
  2. Q. Zhang, H. Q. Li, Y. K. Ning, D. Liang and G. R. Zhao, "Design and Realization of a Wearable Hip-Airbag System for Fall Protection", Applied Mechanics and Materials, Vol. 461, pp. 667-674, 2013. https://doi.org/10.4028/www.scientific.net/AMM.461.667
  3. T. Tamura, T. Yoshimura, M. Sekine, M. Uchida and O. Tanaka, "A Wearable Airbag to Prevent Fall Injuries", Institute of Electrical and Electronics Engineers (IEEE) Transactions on Information Technology in Biomedicine. Vol. 13, No. 6, pp. 910-914, 2009.
  4. M. N. Nyan, F. E.H. Tay and E. Murugasu, "A Wearable System for Pre-impact Fall Detection", Journal of Biomechanics, Vol. 41, Issue. 16, pp. 3475-3481, 2008. https://doi.org/10.1016/j.jbiomech.2008.08.009
  5. N. Otanasap, "Pre-Impact Fall Detection Based on Wearable Device Using Dynamic Threshold Model", 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 362-365, 2016.
  6. S. I. Lee, S. H. Kim and T. H. Kim, "A Comparison Study on the Risk and Accident Characteristics of Personal Mobility", J. Korean Soc. Saf., Vol. 32, No. 3. pp. 151-159, 2017. https://doi.org/10.14346/JKOSOS.2017.32.3.151
  7. B. G. Loh, "A Work-related Musculoskeletal Disorder Risk Assessment Platform using Smart Sensor", J. Korean Soc. Saf., Vol. 30, No. 3. pp. 93-99, 2015. https://doi.org/10.14346/JKOSOS.2015.30.3.93
  8. H. S. Kim, G. S. Byun, M. Huang and W. Baek, "Design Concepts of a Wearable Airbag System for Bikers and Its Inflation Time Analysis," Proceedings of 2018 International Symposium on Advanced Mechanical and Power Engineering (ISAMPE), pp. 120-126, 2018.
  9. N. C. Craig and E. A. Gislason, "Law of Thermodynamics; Irreversible and Reversible Processes", Journal of Chemical Education, Vol. 79, Issue 2, pp. 193-201, 2002. https://doi.org/10.1021/ed079p193