DOI QR코드

DOI QR Code

Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces

  • Mohammadzadeh, Behzad (Department of Landscape Architecture and Rural System Engineering, Seoul National University) ;
  • Choi, Eunsoo (Department of Civil Engineering, Hongik University) ;
  • Kim, Dongkyun (Department of Civil Engineering, Hongik University)
  • Received : 2018.11.14
  • Accepted : 2019.03.11
  • Published : 2019.06.10

Abstract

This study presents a comprehensive nonlinear dynamic approach to investigate the linear and nonlinear vibration of sandwich plates fabricated from functionally graded materials (FGMs) resting on an elastic foundation. Higher-order shear deformation theory and Hamilton's principle are employed to obtain governing equations. The Runge-Kutta method is employed together with the commercially available mathematical software MAPLE 14 to solve the set of nonlinear dynamic governing equations. Method validity is evaluated by comparing the results of this study and those of previous research. Good agreement is achieved. The effects of temperature change on frequencies are investigated considering various temperatures and various volume fraction index values, N. As the temperature increased, the plate frequency decreased, whereas with increasing N, the plate frequency increased. The effects of the side-to-thickness ratio, c/h, on natural frequencies were investigated. With increasing c/h, the frequencies increased nonlinearly. The effects of foundation stiffness on nonlinear vibration of the sandwich plate were also studied. Backbone curves presenting the variation of maximum displacement with respect to plate frequency are presented to provide insight into the nonlinear vibration and dynamic behavior of FGM sandwich plates.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Ahmadi, I. (2018), "Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates", Struct. Eng. Mech., 65(3), 275-290. https://doi.org/10.12989/SEM.2018.65.3.275
  2. Alibeigloo, A. (2017), "Three dimensional coupled thermoelasticity solution of sandwich plate with FGM core under thermal shock", Compos. Struct., 177, 96-103. https://doi.org/10.1016/j.compstruct.2017.06.046.
  3. Arunkumar, M.P., Pitchaimani, J. and Gangadharan, KV. (2018), "Bending and free vibration analysis of foam-filled truss core sandwich panel", J. Sandwich Struct. Mater., 20(5), 617-638. https://doi.org/10.1177/1099636216670612.
  4. Belarbi, M.O., Tati, A., Ounis, H. and Benchabane, A. (2016), "Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates", Struct. Eng. Mech., 57(3), 473-506. https://doi.org/10.1007/s11029-019-09807-y.
  5. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989 /sem.2016.58.3.397. https://doi.org/10.12989/sem.2016.58.3.397
  6. Cadou, J.M., Boumediene, F., Guevel, Y., Girault, G., Duigou, L., Daya, E.M. and Potier-Ferry, M. (2016), "A high order reduction-correction method for Hopf bifurcation in fluids and for viscoelastic vibration", Comput. Mech., 57(2), 305-324. https://doi.org/10.1007/s00466-015-1232-4.
  7. Choi, E., Mohammadzadeh, B., Kim, D. and Jeon, J.S. (2018), "A new experimental investigation into the effects of reinforcing mortar beams with superelastic SMA fibers on controlling and closing cracks", Compos. Part B, 137, 140-152. https://doi.org/10.1016/j.compositesb.2017.11.017.
  8. Choi, E., Chae, S.W., Park, H., Nam, T.H., Mohammadzadeh, B. and Hwang, J.H. (2018), "Investigating self-centering capacity of superelastic shape memory alloy fibers with different anchorages through pullout tests", J. Nanosci. Nanotechnol., 18, 6228-6232. https://doi.org/10.1166/jnn.2018.15635.
  9. Choi, E., Mohammadzadeh, B., Hwang, J.H and Kim, W.J. (2018), "Pullout behavior of superelastic SMA fibers with various end-shapes embedded in cement mortar", Construct. Build Mater., 167, 605-616. https://doi.org/10.1016/ j.conbuildmat.2018.02.070.
  10. Daouadji, T.H. and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory," Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.
  11. Demasi, L. (2013), "Partially layer wise advanced Zig Zag and HSDT models based on the generalized unified formulation", Eng. Struct., 53, 63-91. https://doi.org/10.1016/j.engstruct.2013.01.021.
  12. Ebrahimi, F. and Heidari, E. (2018), "Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method", Struct. Eng. Mech., 68(1), 131-157. https://doi.org/10.12989/SEM.2018.68.1.131
  13. Elmossouess, B., Kebdani, S., Bouiadjra, M.B. and Tounsi, A. (2017), "A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates", Struct. Eng. Mech., 62(4), 401-415. https://doi.org/10.12989/ sem.2017.62.4.401.
  14. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda.Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", J. Mech. Sci., 53, 237-247. https://doi.org/10.1016/ j.ijmecsci.2011.01.004.
  15. Farokhi, H. and Ghayesh, M.H. (2015), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002.
  16. Farokhi, H., Ghayesh, M.H. and Ambili, M. (2013), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001.
  17. Farokhi, H. and Ghayesh, M.H. (2015), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/ j.ijengsci.2015.02.005.
  18. Farokhi, H., Ghayesh, M.H., Gholipour, A. and Hussain, S. (2017), "Motion characteristics of bilayered extensible Timoshenko microbeams", J. Eng. Sci., 112, 1-17. https://doi.org/10.1016/j.ijengsci.2016.09.007.
  19. Farokhi, H. and Ghayesh, M.H. (2018), "Nonlinear mechanics of electrically actuated microplates", J. Eng. Sci., 123, 197-213. https://doi.org/10.1016/j.ijengsci.2017.08.017.
  20. Farokhi, H. and Ghayesh, M.H. (2018), "Supercritical nonlinear parametric dynamics of Timoshenko microbeams", Communication. Nonlinear. Sci. Numeric. Simul., 59, 592-605. https://doi.org/10.1016/j.cnsns.2017.11.033.
  21. Feli, S. and Jalilian, M.M. (2017), "Theoretical model of low-velocity impact on foam-core sandwich panels using finite difference method", J. Sandwich Struct. Mater., 19(3), 261-290. https://doi.org/10.1177/1099636216685316.
  22. Gholami, R. and Ansari, R. (2018), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular pates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019.
  23. Ghayesh, M.H. (2018), "Functionally graded microbeams: Simultaneous presence of imperfection and viscoelasticity", J. Mech. Sci, 140, 339-350. https://doi.org/10.1016/ j.ijmecsci.2018.02.037.
  24. Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017), "Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams", J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001.
  25. Ghayesh, M.H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017.
  26. Ghayesh, M.H. (2018), "Dynamics of functionally graded viscoelastic microbeams", J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.
  27. Ghayesh, M.H. and Farokhi, H. (2015), "Chaotic motion of a parametrically excited microbeam", J. Eng. Sci., 96, 34-45. https://doi.org/10.1016/j.ijengsci.2015.07.004.
  28. Ghayesh, M.H. and Farokhi, H., Alici, G. (2016), "Size-dependent performance of microgyroscopes", J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003.
  29. Ghayesh, M.H and Amabili, M., Farokhi, H. (2013), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003.
  30. Ghayesh, M.H. and Farokhi, H. (2015), "Nonlinear dynamics of microplates", J. Eng. Sci., 86, 60-73. https://doi.org/10.1016/j.ijengsci.2014.10.004.
  31. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013), "Nonlinear behaviour of electrically actuated MEMS resonators", J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/ j.ijengsci.2013.05.006.
  32. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001.
  33. Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017), "Oscillations of functionally graded microbeams", J. Eng. Sci., 110, 35-53. https://doi.org/10.1016/j.ijengsci.2016.09.011.
  34. Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2018), "Nonlinear oscillations of functionally graded microplates", J. Eng. Sci., 122, 56-72. https://doi.org/10.1016/j.ijengsci.2017.03.014.
  35. Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dynam., 79(3), 1771-1785. https://doi.org/10.1007/s11071-014-1773-7.
  36. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B, 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021.
  37. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B, 60, 423-439. https://doi.org/10.1016/j.compositesb.2013.12.074.
  38. Heydari, M.M., Bidgoli, A.H., Golshani, H.R., Beygipoor, G. and Davoodi, A. (2015), "Nonlinear bending analysis of functionally graded CNT-reinforced composite Mindlin polymeric temperature-dependent plate resting on orthotropic elastomeric medium using GDQM", Nonlinear Dynam., 79, 1425-1441. https://doi.org/10.1007/s11071-014-1751-0.
  39. Kamil Zur, K. (2018), "Free vibration analysis of elastically supported functionally graded annular plates via quasi- Green's function method", Compos. Part B, 144, 37-55. https://doi.org/10.1016/j.compositesb.2018.02.019.
  40. Li, Q., Lu, V.P. and Kou, K.P. (2009), "Three-dimensional vibration analysis of functionally graded material sandwich plate", J. Sound Vib., 311, 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
  41. Mantari, J.L., Granados, E.V. and Guedes Soares, C. (2014), "Vibrational analysis of advanced composite plates resting on elastic foundation", Compos. Part B, 66, 407-419. https://doi.org/10.1016/j.compositesb.2014.05.026.
  42. Mohammadzadeh, B. and Noh, H.C. (2014), "Use of buckling coefficient in predicting buckling load of plates with and without holes", J. Korean Soc. Adv. Compos. Struct., 5(3), 1-7. http://dx.doi.org/10.11004/kosacs.2014.5.3.001.
  43. Mohammadzadeh, B. and Noh, H.C. (2016), "Investigation into buckling coefficients of plates with holes considering variation of hole size and plate thickness", Mechanika, 22(3), 167-175. http://dx.doi.org/10.5755/j01.mech.22.3.12767.
  44. Mohammadzadeh, B., Choi, E. and Kim, W.J. (2018), "Comprehensive investigation of buckling behavior of plates considering effects of holes", Struct. Eng. Mech., 68(2), 261-275. https://doi.org/10.12989/sem.2018.68.2.261.
  45. Mohammadzadeh, B. (2016), "Investigation into dynamic responses of isotropic plates and sandwich plates subjected to blast loads", Ph.D. Dissertation, Sejong University, Seoul, Korea.
  46. Mohammadzadeh, B. and Noh, H.C. (2017), "Analytical method to investigate nonlinear dynamic responses of sandwich plates with FGM faces resting on elastic foundation considering blast loads", Compos. Struct., 174, 142-157. https://doi.org/10.1016/j.compstruct.2017.03.087.
  47. Mohammadzadeh, B. and Noh, H.C. (2015), "Numerical analysis of dynamic responses of the plate subjected to impulsive loads", J. Civil Environ. Struct. Construc. Arch. Eng., 9(9), 1148-1151.
  48. Mohammadzadeh, B., Bina, M. and Hasounizadeh, H. (2012), "Application and comparison of mathematical and physical models on inspecting slab of stilling basin floor under static and dynamic forces", Appl. Mech. Mater., 147, 283-287. https://doi.org/10.4028/www.scientific.net/AMM.147.283.
  49. Mohammadzadeh, B. and Noh, H.C. (2018), "An analytical and numerical investigations on the dynamic responses of steel plates considering the blast loads", J. Steel Struct., 19, https://doi.org/10.1007/s13296-018-0150-7.
  50. Mohammadzadeh, B. and Noh, H.C. (2014), "Investigation into central-difference and Newmark's beta method in measuring dynamic responses", Adv. Mater. Res., 831, 95-99. https://doi.org/10.4028/www.scientific.net/AMR.831.95
  51. Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Element Anal. Design, 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006.
  52. Ninh, D.G. and Bich, D.H. (2016), "Nonlinear torsional bucklin and postbuckling of eccentrically stiffened ceramic functionally graded material metal layer cylindrical shell surrounded by elastic foundation subjected to thermo- mechanical load", J. Sandwich Struct. Mater., 18(6), 712-738. https://doi.org/10.1177/1099636216644787.
  53. Nguyen, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2017), "A novel three-variable shear deformation plate formulation: theory and isogeometric implementation", Comput. Method Appl. Mech. Eng., 326, 376-401. https://doi.org/10.1016/j.cma.2017.07.024.
  54. Ngyuen, T.K., Ngyuen, V.H., Chau-Dinh, T., Vo, T.P. and Ngyuen-Xuan, H. (2016), "Static and vibration analysis of isotropic and functionally graded sandwich plates using an edge-based MITC3 finite elements", Compos. Part B, 107, 162-173. https://doi.org/10.1016/j.compositesb.2016.09.058.
  55. Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of Functionally graded materials", Struct. Eng. Mech., 58(2), 217-230. https://doi.org/10.12989/ sem.2016.58.2.217.
  56. Rajasekaran, S. (2013), "Free vibration of tapered arches made of axially Functionally graded materials", Struct. Eng. Mech., 45(4), 569-594. https://doi.org/10.12989/sem.2013.45.4.569.
  57. Ruocco, E., Zhang, H. and Wang, C.M. (2018), "Hencky bar-net model for buckling and vibration analysis of rectangular plates with non-uniform thickness", Eng. Struct., 168, 653-668. https://doi.org/10.1016/j.engstruct.2018.04.080.
  58. Shahrjerdi, A., Mustapha, F., Bayat, M., Sapuan, S.M., Zahari, R. and Shahzamaninan, M.M. (2011), "Natural frequency of F.G. rectangular plate by shear deformation theory", Mater. Sci. Eng., 17, 166-175.
  59. Shariyat, M., Khalili, S.M.R. and Rajabi, I. (2015), "A global-local theory with stress recovery and a new post-processing technique for stress analysis of asymmetric orthotropic sandwich plates with single/dual cores", Comput. Method Appl. Mech. Eng., 286, 192-215. https://doi.org/10.1016/j.cma.2014.12.015.
  60. Soni, S., Jain, N.K. and Joshi, P.V. (2017), "Analytical modeling for nonlinear vibration analysis of partially cracked thin magneto-electro-elastic plate coupled with fluid", Nonlinear Dynam., 90, 137-170. https://doi.org/10.1007/s11071-017-3652-5.
  61. Trinh, L.C., Vo, T.P., Thai, H.T., Nguyen, T.K. and Keerthan, P. (2018), "State-space Levy solution for size-dependent static, free vibration and buckling behaviours of functionally graded sandwich plates", Compos. Part B, 149, 144-164. https://doi.org/10.1016/j.compositesb.2018.05.017.
  62. Vafakhah, Z. and Navayi Neya, B. (2019), "An exact three-dimensional solution for bending of thick rectangular FGM plate", Compos. Part B, 156, 72-87. https://doi.org/10.1016/j.compositesb.2018.08.036.
  63. Wang, Z.X. and Shen, H.S. (2011), "Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundation", Compos. Struct., 93, 2521-2532. https://doi.org/10.1016/j.compstruct.2011.04.014.
  64. Wang, Y.Q. and Zu, J.W. (2017), "Nonlinear dynamic thermoelastic response of rectangular FGM plates with longitudinal velocity", Compos. Part B, 117, 74-88. https://doi.org/10.1016/j.compositesb.2017.02.037.
  65. Wang, Y.Q. and Zu, J.W. (2017), "Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid", Compos. Struct., 164, 130-144. https://doi.org/10.1016/j.compstruct.2016.12.053.
  66. Wang, Y.Q., Ye, C. and Zu, J.W. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
  67. Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
  68. Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronautica, 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004.
  69. Wang, Y.Q., Huang, X.B. and Li, J. (2016), "Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process", J. Mech. Sci., 110, 201-216. https://doi.org/10.1016/j.ijmecsci.2016.03.010.
  70. Wang, Y.Q., Li, H.H., Zhang, Y.F. and Zu, J.W. (2018), "A nonlinear surface-stress-dependent model for vibration analysis of cylindrical nanoscale shells conveying fluid", Appl. Math. Model., 64, 55-70. https://doi.org/10.1016/j.apm.2018.07.016.
  71. Wang, Y.Q., Wan, Y.H. and Zu, J. (2019), "Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence", Thin Wall Struct., 135, 537-547. https://doi.org/10.1016/j.tws.2018.11.023.
  72. Wang, Y.Q. and Yang, Z. (2017), "Nonlinear vibrations of moving functionally graded plates containing porosities and contacting with liquid: internal resonance", Nonlinear Dynam., 90, 1461-1480. https://doi.org/10.1007/s11071-017-3739-z.
  73. Wang, Y.Q. and Zu, J.W. (2017), "Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain", Appl. Math. Mech., 38, 625-646. https://doi.org/10.1007/s10483-017-2192-9.
  74. Wang, Y.Q., Ye, C. and Zu, J. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  75. Wang, Y.Q. and Zu, J.W. (2018), "Nonlinear Dynamics of a Translational FGM Plate with Strong Mode Interaction", J. Struct. Stability Dynam., 18, 1850031. https://doi.org/10.1142/S0219455418500311.
  76. Wang, Y.Q., Liang, L. and Guo, X.H. (2013), "Internal resonance of axially moving laminated circular cylindrical shells", J. Sound Vib., 332, 6434-6450. https://doi.org/10.1016/ j.jsv.2013.07.007.
  77. Wang, Y.Q. (2014), "Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration", Nonlinear Dynam., 77, 1693-1707. https://doi.org/10.1007/s11071-014-1410-5.
  78. Wang, Y.Q. and Zu, J.W. (2017), "Instability of Viscoelastic Plates with Longitudinally Variable Speed and Immersed in Ideal Liquid", J. Appl. Mech., 9(1), 1750005. https://doi.org/10.1142/S1758825117500053.
  79. Yang, C., Chen, J. and Zhao, S. (2013), "The interlaminar stress of laminated composite under uniform axial deformation", Modeling Numeric. Simul. Mater. Sci., 3, 49-60. http://dx.doi.org/10.4236/mnsms.2013.32007.
  80. Zamani Nejad, M., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional Functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161.
  81. Zhou, K., Huang, X., Tian, J. and Hua, H. (2018) "Vibration and flutter analysis of supersonic porous functionally graded material plates with temperature gradient and resting on elastic foundation", Compos. Struct., 204, 63-79. https://doi.org/10.1016/j.compstruct.2018.07.057.

Cited by

  1. Manufacturing ZrB 2 –SiC–TaC Composite: Potential Application for Aircraft Wing Assessed by Frequency Analysis through Finite Element Model vol.13, pp.10, 2019, https://doi.org/10.3390/ma13102213
  2. Seismic analysis of high-rise steel frame building considering irregularities in plan and elevation vol.39, pp.1, 2019, https://doi.org/10.12989/scs.2021.39.1.065