DOI QR코드

DOI QR Code

Korean clinical practice guideline for perioperative red blood cell transfusion from Korean Society of Anesthesiologists

  • Koo, Bon-Nyeo (Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine) ;
  • Kwon, Min A (Department of Anesthesiology and Pain Medicine, Dankook University Hospital) ;
  • Kim, Sang-Hyun (Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine) ;
  • Kim, Jong Yeop (Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine) ;
  • Moon, Young-Jin (Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Park, Sun Young (Department of Anesthesiology and Pain Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine) ;
  • Lee, Eun-Ho (Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Chae, Min Suk (Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Choi, Sung Uk (Department of Anesthesiology and Pain Medicine, Korea University College of Medicine) ;
  • Choi, Jeong-Hyun (Department of Anesthesiology and Pain Medicine, Kyung Hee University College of Medicine) ;
  • Hwang, Jin-Young (Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine)
  • Received : 2018.11.19
  • Accepted : 2018.11.27
  • Published : 2019.04.01

Abstract

Background: Considering the functional role of red blood cells (RBC) in maintaining oxygen supply to tissues, RBC transfusion can be a life-saving intervention in situations of severe bleeding or anemia. RBC transfusion is often inevitable to address intraoperative massive bleeding; it is a key component in safe perioperative patient management. Unlike general medical resources, packed RBCs (pRBCs) have limited availability because their supply relies entirely on voluntary donations. Additionally, excessive utilization of pRBCs may aggravate prognosis or increase the risk of developing infectious diseases. Appropriate perioperative RBC transfusion is, therefore, crucial for the management of patient safety and medical resource conservation. These concerns motivated us to develop the present clinical practice guideline for evidence-based efficient and safe perioperative RBC transfusion management considering the current clinical landscape. Methods: This guideline was obtained after the revision and refinement of exemplary clinical practice guidelines developed in advanced countries. This was followed by rigorous evidence-based reassessment considering the healthcare environment of the country. Results: This guideline covers all important aspects of perioperative RBC transfusion, such as preoperative anemia management, appropriate RBC storage period, and leukoreduction (removal of white blood cells using filters), reversal of perioperative bleeding tendency, strategies for perioperative RBC transfusion, appropriate blood management protocols, efforts to reduce blood transfusion requirements, and patient monitoring during a perioperative transfusion. Conclusions: This guideline will aid decisions related to RBC transfusion in healthcare settings and minimize patient risk associated with unnecessary pRBC transfusion.

Keywords

Acknowledgement

Supported by the Korean Society of Anesthesiologists and developed under the direction of Tae-Yop Kim, M.D., Director, Committee on Academic Affairs.

References

  1. Consensus conference. Perioperative red blood cell transfusion. JAMA 1988; 260: 2700-3. https://doi.org/10.1001/jama.1988.03410180108040
  2. Cho N, Kim J, Lee WS. Survey on the usage of leukocyte reduced and irradiated blood components in Korea (2007-2013). Korean J Blood Transfus 2015; 26: 159-73. https://doi.org/10.17945/kjbt.2015.26.2.159
  3. Wang JK, Klein HG. Red blood cell transfusion in the treatment and management of anaemia: the search for the elusive transfusion trigger. Vox Sang 2010; 98: 2-11. https://doi.org/10.1111/j.1423-0410.2009.01223.x
  4. The ADAPTE Collaboration. ADAPTE Resource Toolkit for Guideline Adaptation Version 2.0. 2010 [Internet]. Pitlochry: The Guidelines International Network [updated 2010 Mar; cited 2018 Nov 19]. Available from https://www.g-i-n.net/document-store/working-groupsdocuments/adaptation/adapte-resource-toolkit-guideline-adaptation-2-0.pdf/view.
  5. American Society of Anesthesiologists Task Force on Perioperative Blood Management. Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management*. Anesthesiology 2015; 122: 241-75. https://doi.org/10.1097/ALN.0000000000000463
  6. Klein AA, Arnold P, Bingham RM, Brohi K, Clark R, Collis R, et al. AAGBI guidelines: the use of blood components and their alternatives 2016. Anaesthesia 2016; 71: 829-42. https://doi.org/10.1111/anae.13489
  7. Carson JL, Guyatt G, Heddle NM, Grossman BJ, Cohn CS, Fung MK, et al. Clinical Practice Guidelines From the AABB: Red Blood Cell Transfusion Thresholds and Storage. JAMA 2016; 316: 2025-35. https://doi.org/10.1001/jama.2016.9185
  8. AGREE Next Steps Consortium. The AGREE II Instrument: Electronic version [Internet]. AGREE; 2009 May[updated 2017 Dec; cited 2018 Nov 19]. Available from https://www.agreetrust.org/wp-content/uploads/2017/12/AGREE-II-Users-Manual-and-23-item-Instrument-2009- Update-2017.pdf.
  9. Oh MK, Jo H, Lee YK. Improving the reliability of clinical practice guideline appraisals: effects of the Korean AGREE II scoring guide. J Korean Med Sci 2014; 29: 771-5. https://doi.org/10.3346/jkms.2014.29.6.771
  10. Kozek-Langenecker SA, Afshari A, Albaladejo P, Santullano CA, De Robertis E, Filipescu DC, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol 2013; 30: 270-382. https://doi.org/10.1097/EJA.0b013e32835f4d5b
  11. Cuenca J, Garcia-Erce JA, Martinez F, Cardona R, Perez-Serrano L, Munoz M. Preoperative haematinics and transfusion protocol reduce the need for transfusion after total knee replacement. Int J Surg 2007; 5: 89-94. https://doi.org/10.1016/j.ijsu.2006.02.003
  12. Lidder PG, Sanders G, Whitehead E, Douie WJ, Mellor N, Lewis SJ, et al. Pre-operative oral iron supplementation reduces blood transfusion in colorectal surgery - a prospective, randomised, controlled trial. Ann R Coll Surg Engl 2007; 89: 418-21. https://doi.org/10.1308/003588407X183364
  13. Andrews CM, Lane DW, Bradley JG. Iron pre-load for major joint replacement. Transfus Med 1997; 7: 281-6. https://doi.org/10.1046/j.1365-3148.1997.d01-42.x
  14. Garrido-Martin P, Nassar-Mansur MI, de la Llana-Ducros R, Virgos-Aller TM, Rodriguez Fortunez PM, Avalos-Pinto R, et al. The effect of intravenous and oral iron administration on perioperative anaemia and transfusion requirements in patients undergoing elective cardiac surgery: a randomized clinical trial. Interact Cardiovasc Thorac Surg 2012; 15: 1013-8. https://doi.org/10.1093/icvts/ivs344
  15. Weber EW, Slappendel R, Hemon Y, Mahler S, Dalen T, Rouwet E, et al. Effects of epoetin alfa on blood transfusions and postoperative recovery in orthopaedic surgery: the European Epoetin Alfa Surgery Trial (EEST). Eur J Anaesthesiol 2005; 22: 249-57. https://doi.org/10.1017/S0265021505000426
  16. Yoo YC, Shim JK, Kim JC, Jo YY, Lee JH, Kwak YL. Effect of single recombinant human erythropoietin injection on transfusion requirements in preoperatively anemic patients undergoing valvular heart surgery. Anesthesiology 2011; 115: 929-37. https://doi.org/10.1097/ALN.0b013e318232004b
  17. Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T, et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med 2008; 358: 1229-39. https://doi.org/10.1056/NEJMoa070403
  18. Cata JP, Klein EA, Hoeltge GA, Dalton JE, Mascha E, O'Hara J, et al. Blood storage duration and biochemical recurrence of cancer after radical prostatectomy. Mayo Clin Proc 2011; 86: 120-7. https://doi.org/10.4065/mcp.2010.0313
  19. McKenny M, Ryan T, Tate H, Graham B, Young VK, Dowd N. Age of transfused blood is not associated with increased postoperative adverse outcome after cardiac surgery. Br J Anaesth 2011; 106: 643-9. https://doi.org/10.1093/bja/aer029
  20. Chen J, Singhapricha T, Memarzadeh M, Ziman A, Yuan S, Hu KQ, et al. Storage age of transfused red blood cells during liver transplantation and its intraoperative and postoperative effects. World J Surg 2012; 36: 2436-42. https://doi.org/10.1007/s00268-012-1691-0
  21. Dhabangi A, Ainomugisha B, Cserti-Gazdewich C, Ddungu H, Kyeyune D, Musisi E, et al. Effect of transfusion of red blood cells with longer vs shorter storage duration on elevated blood lactate levels in children with severe anemia: the TOTAL randomized clinical trial. JAMA 2015; 314: 2514-23. https://doi.org/10.1001/jama.2015.13977
  22. Lacroix J, Hebert PC, Fergusson DA, Tinmouth A, Cook DJ, Marshall JC, et al. Age of transfused blood in critically ill adults. N Engl J Med 2015; 372: 1410-8. https://doi.org/10.1056/NEJMoa1500704
  23. Steiner ME, Ness PM, Assmann SF, Triulzi DJ, Sloan SR, Delaney M, et al. Effects of red-cell storage duration on patients undergoing cardiac surgery. N Engl J Med 2015; 372: 1419-29. https://doi.org/10.1056/NEJMoa1414219
  24. Alexander PE, Barty R, Fei Y, Vandvik PO, Pai M, Siemieniuk RA, et al. Transfusion of fresher vs older red blood cells in hospitalized patients: a systematic review and meta-analysis. Blood 2016; 127: 400-10. https://doi.org/10.1182/blood-2015-09-670950
  25. Heddle NM, Klama LN, Griffith L, Roberts R, Shukla G, Kelton JG. A prospective study to identify the risk factors associated with acute reactions to platelet and red cell transfusions. Transfusion 1993; 33: 794-7. https://doi.org/10.1046/j.1537-2995.1993.331094054613.x
  26. Stack G, Snyder EL. Cytokine generation in stored platelet concentrates. Transfusion 1994; 34: 20-5. https://doi.org/10.1046/j.1537-2995.1994.34194098597.x
  27. Cardigan R, Sutherland J, Garwood M, Krailadsiri P, Seghatchian J, Beard M, et al. The effect of leucocyte depletion on the quality of freshfrozen plasma. Br J Haematol 2001; 114: 233-40. https://doi.org/10.1046/j.1365-2141.2001.02907.x
  28. Yomtovian R, Gernsheimer T, Assmann SF, Mohandas K, Lee TH, Kalish LA, et al. WBC reduction in RBC concentrates by prestorage filtration: multicenter experience. Transfusion 2001; 41: 1030-6. https://doi.org/10.1046/j.1537-2995.2001.41081030.x
  29. Seftel MD, Growe GH, Petraszko T, Benny WB, Le A, Lee CY, et al. Universal prestorage leukoreduction in Canada decreases platelet alloimmunization and refractoriness. Blood 2004; 103: 333-9. https://doi.org/10.1182/blood-2003-03-0940
  30. Hall S, Danby R, Osman H, Peniket A, Rocha V, Craddock C, et al. Transfusion in CMV seronegative T-depleted allogeneic stem cell transplant recipients with CMV-unselected blood components results in zero CMV transmissions in the era of universal leukocyte reduction: a U.K. dual centre experience. Transfus Med 2015; 25: 418-23. https://doi.org/10.1111/tme.12219
  31. van de Watering LM, Hermans J, Houbiers JG, van den Broek PJ, Bouter H, Boer F, et al. Beneficial effects of leukocyte depletion of transfused blood on postoperative complications in patients undergoing cardiac surgery: a randomized clinical trial. Circulation 1998; 97: 562-8. https://doi.org/10.1161/01.CIR.97.6.562
  32. Bilgin YM, van de Watering LM, Eijsman L, Versteegh MI, Brand R, van Oers MH, et al. Double-blind, randomized controlled trial on the effect of leukocyte-depleted erythrocyte transfusions in cardiac valve surgery. Circulation 2004; 109: 2755-60. https://doi.org/10.1161/01.CIR.0000130162.11925.21
  33. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care 2016; 20: 100. https://doi.org/10.1186/s13054-016-1265-x
  34. Schick KS, Fertmann JM, Jauch KW, Hoffmann JN. Prothrombin complex concentrate in surgical patients: retrospective evaluation of vitamin K antagonist reversal and treatment of severe bleeding. Crit Care 2009; 13: R191. https://doi.org/10.1186/cc8186
  35. Hanke AA, Joch C, Gorlinger K. Long-term safety and efficacy of a pasteurized nanofiltrated prothrombin complex concentrate (Beriplex P/N): a pharmacovigilance study. Br J Anaesth 2013; 110: 764-72. https://doi.org/10.1093/bja/aes501
  36. Watson HG, Baglin T, Laidlaw SL, Makris M, Preston FE. A comparison of the efficacy and rate of response to oral and intravenous Vitamin K in reversal of over-anticoagulation with warfarin. Br J Haematol 2001; 115: 145-9. https://doi.org/10.1046/j.1365-2141.2001.03070.x
  37. Dotan ZA, Mor Y, Leibovitch I, Varon D, Golomb J, Duvdevani M, et al. The efficacy and safety of perioperative low molecular weight heparin substitution in patients on chronic oral anticoagulant therapy undergoing transurethral prostatectomy for bladder outlet obstruction. J Urol 2002; 168: 610-3. https://doi.org/10.1016/S0022-5347(05)64689-7
  38. Shim JK, Choi YS, Oh YJ, Bang SO, Yoo KJ, Kwak YL.. Effects of preoperative aspirin and clopidogrel therapy on perioperative blood loss and blood transfusion requirements in patients undergoing off-pump coronary artery bypass graft surgery. J Thorac Cardiovasc Surg 2007; 134: 59-64. https://doi.org/10.1016/j.jtcvs.2007.03.013
  39. Firanescu CE, Martens EJ, Schonberger JP, Soliman Hamad MA, van Straten AH. Postoperative blood loss in patients undergoing coronary artery bypass surgery after preoperative treatment with clopidogrel. A prospective randomised controlled study. Eur J Cardiothorac Surg 2009; 36: 856-62. https://doi.org/10.1016/j.ejcts.2009.05.032
  40. Devereaux PJ, Mrkobrada M, Sessler DI, Leslie K, Alonso-Coello P, Kurz A, et al. Aspirin in patients undergoing noncardiac surgery. N Engl J Med 2014; 370: 1494-503. https://doi.org/10.1056/NEJMoa1401105
  41. Foss NB, Kristensen MT, Jensen PS, Palm H, Krasheninnikoff M, Kehlet H. The effects of liberal versus restrictive transfusion thresholds on ambulation after hip fracture surgery. Transfusion 2009; 49: 227-34. https://doi.org/10.1111/j.1537-2995.2008.01967.x
  42. Carson JL, Terrin ML, Noveck H, Sanders DW, Chaitman BR, Rhoads GG, et al. Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med 2011; 365: 2453-62. https://doi.org/10.1056/NEJMoa1012452
  43. Gregersen M, Borris LC, Damsgaard EM. Postoperative blood transfusion strategy in frail, anemic elderly patients with hip fracture: the TRIFE randomized controlled trial. Acta Orthop 2015; 86: 363-72. https://doi.org/10.3109/17453674.2015.1006980
  44. Mazer CD, Whitlock RP, Fergusson DA, Hall J, Belley-Cote E, Connolly K, et al. Restrictive or liberal red-cell transfusion for cardiac surgery. N Engl J Med 2017; 377: 2133-44. https://doi.org/10.1056/NEJMoa1711818
  45. Cooper HA, Rao SV, Greenberg MD, Rumsey MP, McKenzie M, Alcorn KW, et al. Conservative versus liberal red cell transfusion in acute myocardial infarction (the CRIT Randomized Pilot Study). Am J Cardiol 2011; 108: 1108-11. https://doi.org/10.1016/j.amjcard.2011.06.014
  46. Carson JL, Brooks MM, Abbott JD, Chaitman B, Kelsey SF, Triulzi DJ, et al. Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. Am Heart J 2013; 165: 964-71. https://doi.org/10.1016/j.ahj.2013.03.001
  47. Docherty AB, O'Donnell R, Brunskill S, Trivella M, Doree C, Holst L, et al. Effect of restrictive versus liberal transfusion strategies on outcomes in patients with cardiovascular disease in a non-cardiac surgery setting: systematic review and meta-analysis. BMJ 2016; 352: i1351.
  48. Capraro L, Kuitunen A, Salmenpera M, Kekomaki R. On-site coagulation monitoring does not affect hemostatic outcome after cardiac surgery. Acta Anaesthesiol Scand 2001; 45: 200-6. https://doi.org/10.1034/j.1399-6576.2001.450211.x
  49. Nuttall GA, Oliver WC, Santrach PJ, Bryant S, Dearani JA, Schaff HV, et al. Efficacy of a simple intraoperative transfusion algorithm for nonerythrocyte component utilization after cardiopulmonary bypass. Anesthesiology 2001; 94: 773-81. https://doi.org/10.1097/00000542-200105000-00014
  50. Wong CJ, Vandervoort MK, Vandervoort SL, Donner A, Zou G, MacDonald JK, et al. A cluster-randomized controlled trial of a blood conservation algorithm in patients undergoing total hip joint arthroplasty. Transfusion 2007; 47: 832-41. https://doi.org/10.1111/j.1537-2995.2007.01197.x
  51. Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg 1999; 88: 312-9. https://doi.org/10.1097/00000539-199902000-00016
  52. Ak K, Isbir CS, Tetik S, Atalan N, Tekeli A, Aljodi M, et al. Thromboelastography-based transfusion algorithm reduces blood product use after elective CABG: a prospective randomized study. J Card Surg 2009; 24: 404-10. https://doi.org/10.1111/j.1540-8191.2009.00840.x
  53. Schaden E, Kimberger O, Kraincuk P, Baron DM, Metnitz PG, Kozek-Langenecker S. Perioperative treatment algorithm for bleeding burn patients reduces allogeneic blood product requirements. Br J Anaesth 2012; 109: 376-81. https://doi.org/10.1093/bja/aes186
  54. Simmons JW, White CE, Eastridge BJ, Mace JE, Wade CE, Blackbourne LH. Impact of policy change on US Army combat transfusion practices. J Trauma 2010; 69 Suppl 1: S75-80.
  55. Kajja I, Bimenya GS, Eindhoven GB, ten Duis HJ, Sibinga CT. Surgical blood order equation in femoral fracture surgery. Transfus Med 2011; 21: 7-12. https://doi.org/10.1111/j.1365-3148.2010.01033.x
  56. Dexter F, Ledolter J, Davis E, Witkowski TA, Herman JH, Epstein RH. Systematic criteria for type and screen based on procedure's probability of erythrocyte transfusion. Anesthesiology 2012; 116: 768-78. https://doi.org/10.1097/ALN.0b013e31824a88f5
  57. Frank SM, Rothschild JA, Masear CG, Rivers RJ, Merritt WT, Savage WJ, et al. Optimizing preoperative blood ordering with data acquired from an anesthesia information management system. Anesthesiology 2013; 118: 1286-97. https://doi.org/10.1097/ALN.0b013e3182923da0
  58. Nuttall GA, Santrach PJ, Oliver WC Jr, Ereth MH, Horlocker TT, Cabanela ME, et al. A prospective randomized trial of the surgical blood order equation for ordering red cells for total hip arthroplasty patients. Transfusion 1998; 38: 828-33. https://doi.org/10.1046/j.1537-2995.1998.38998409002.x
  59. Kajikawa M, Nonami T, Kurokawa T, Hashimoto S, Harada A, Nakao A, et al. Autologous blood transfusion for hepatectomy in patients with cirrhosis and hepatocellular carcinoma: use of recombinant human erythropoietin. Surgery 1994; 115: 727-34.
  60. Bouchard D, Marcheix B, Al-Shamary S, Vanden Eynden F, Demers P, Robitaille D, et al. Preoperative autologous blood donation reduces the need for allogeneic blood products: a prospective randomized study. Can J Surg 2008; 51: 422-7.
  61. Matot I, Scheinin O, Jurim O, Eid A. Effectiveness of acute normovolemic hemodilution to minimize allogeneic blood transfusion in major liver resections. Anesthesiology 2002; 97: 794-800. https://doi.org/10.1097/00000542-200210000-00008
  62. Bennett J, Haynes S, Torella F, Grainger H, McCollum C. Acute normovolemic hemodilution in moderate blood loss surgery: a randomized controlled trial. Transfusion 2006; 46: 1097-103. https://doi.org/10.1111/j.1537-2995.2006.00857.x
  63. Jarnagin WR, Gonen M, Maithel SK, Fong Y, D'Angelica MI, Dematteo RP, et al. A prospective randomized trial of acute normovolemic hemodilution compared to standard intraoperative management in patients undergoing major hepatic resection. Ann Surg 2008; 248: 360-9. https://doi.org/10.1097/SLA.0b013e318184db08
  64. Barile L, Fominskiy E, Di Tomasso N, Alpizar Castro LE, Landoni G, De Luca M, et al. Acute normovolemic hemodilution reduces allogeneic red blood cell transfusion in cardiac surgery: a systematic review and meta-analysis of randomized trials. Anesth Analg 2017; 124: 743-52. https://doi.org/10.1213/ANE.0000000000001609
  65. Segal JB, Blasco-Colmenares E, Norris EJ, Guallar E. Preoperative acute normovolemic hemodilution: a meta-analysis. Transfusion 2004; 44: 632-44. https://doi.org/10.1111/j.1537-2995.2004.03353.x
  66. Zhou X, Zhang C, Wang Y, Yu L, Yan M. Preoperative acute normovolemic hemodilution for minimizing allogeneic blood transfusion: a meta-analysis. Anesth Analg 2015; 121: 1443-55. https://doi.org/10.1213/ANE.0000000000001010
  67. Naqash IA, Draboo MA, Lone AQ, Nengroo SH, Kirmani A, Bhat AR. Evaluation of acute normovolemic hemodilution and autotransfusion in neurosurgical patients undergoing excision of intracranial meningioma. J Anaesthesiol Clin Pharmacol 2011; 27: 54-8.
  68. Sims CR 3rd, Delima LR, Calimaran A, Hester R, Pruett WA. Validating the physiologic model hummod as a substitute for clinical trials involving acute normovolemic hemodilution. Anesth Analg 2018; 126: 93-101. https://doi.org/10.1213/ane.0000000000002430
  69. Menichetti A, Tritapepe L, Ruvolo G, Speziale G, Cogliati A, Di Giovanni C, et al. Changes in coagulation patterns, blood loss and blood use after cardiopulmonary bypass: aprotinin vs tranexamic acid vs epsilon aminocaproic acid. J Cardiovasc Surg (Torino) 1996; 37: 401-7.
  70. Ekback G, Axelsson K, Ryttberg L, Edlund B, Kjellberg J, Weckstrom J, et al. Tranexamic acid reduces blood loss in total hip replacement surgery. Anesth Analg 2000; 91: 1124-30. https://doi.org/10.1097/00000539-200011000-00014
  71. Camarasa MA, Olle G, Serra-Prat M, Martin A, Sanchez M, Ricos P, et al. Efficacy of aminocaproic, tranexamic acids in the control of bleeding during total knee replacement: a randomized clinical trial. Br J Anaesth 2006; 96: 576-82. https://doi.org/10.1093/bja/ael057
  72. Karski JM, Teasdale SJ, Norman P, Carroll J, VanKessel K, Wong P, et al. Prevention of bleeding after cardiopulmonary bypass with highdose tranexamic acid. Double-blind, randomized clinical trial. J Thorac Cardiovasc Surg 1995; 110: 835-42. https://doi.org/10.1016/S0022-5223(95)70118-4
  73. Andreasen JJ, Nielsen C. Prophylactic tranexamic acid in elective, primary coronary artery bypass surgery using cardiopulmonary bypass. Eur J Cardiothorac Surg 2004; 26: 311-7. https://doi.org/10.1016/j.ejcts.2004.03.012
  74. Casati V, Bellotti F, Gerli C, Franco A, Oppizzi M, Cossolini M, et al. Tranexamic acid administration after cardiac surgery: a prospective, randomized, double-blind, placebo-controlled study. Anesthesiology 2001; 94: 8-14. https://doi.org/10.1097/00000542-200101000-00007
  75. Sharma V, Katznelson R, Jerath A, Garrido-Olivares L, Carroll J, Rao V, et al. The association between tranexamic acid and convulsive seizures after cardiac surgery: a multivariate analysis in 11 529 patients. Anaesthesia 2014; 69: 124-30. https://doi.org/10.1111/anae.12516
  76. Hunt BJ. The current place of tranexamic acid in the management of bleeding. Anaesthesia 2015; 70 Suppl 1: 50-3. https://doi.org/10.1111/anae.12910
  77. Dalmau A, Sabate A, Acosta F, Garcia-Huete L, Koo M, Sansano T, et al. Tranexamic acid reduces red cell transfusion better than epsilonaminocaproic acid or placebo in liver transplantation. Anesth Analg 2000; 91: 29-34. https://doi.org/10.1097/00000539-200007000-00006
  78. Ortmann E, Besser MW, Klein AA. Antifibrinolytic agents in current anaesthetic practice. Br J Anaesth 2013; 111: 549-63. https://doi.org/10.1093/bja/aet154
  79. Ekback G, Schott U, Axelsson K, Carlberg M. Perioperative autotransfusion and functional coagulation analysis in total hip replacement. Acta Anaesthesiol Scand 1995; 39: 390-5. https://doi.org/10.1111/j.1399-6576.1995.tb04083.x
  80. Rainaldi MP, Tazzari PL, Scagliarini G, Borghi B, Conte R. Blood salvage during caesarean section. Br J Anaesth 1998; 80: 195-8. https://doi.org/10.1093/bja/80.2.195
  81. Mercer KG, Spark JI, Berridge DC, Kent PJ, Scott DJ. Randomized clinical trial of intraoperative autotransfusion in surgery for abdominal aortic aneurysm. Br J Surg 2004; 91: 1443-8. https://doi.org/10.1002/bjs.4793
  82. Niranjan G, Asimakopoulos G, Karagounis A, Cockerill G, Thompson M, Chandrasekaran V. Effects of cell saver autologous blood transfusion on blood loss and homologous blood transfusion requirements in patients undergoing cardiac surgery on- versus offcardiopulmonary bypass: a randomised trial. Eur J Cardiothorac Surg 2006; 30: 271-7. https://doi.org/10.1016/j.ejcts.2006.04.042
  83. Nieder AM, Carmack AJ, Sved PD, Kim SS, Manoharan M, Soloway MS. Intraoperative cell salvage during radical prostatectomy is not associated with greater biochemical recurrence rate. Urology 2005; 65: 730-4. https://doi.org/10.1016/j.urology.2004.10.062
  84. Nieder AM, Manoharan M, Yang Y, Soloway MS. Intraoperative cell salvage during radical cystectomy does not affect long-term survival. Urology 2007; 69: 881-4. https://doi.org/10.1016/j.urology.2007.01.060
  85. Muscari F, Suc B, Vigouroux D, Duffas JP, Migueres I, Mathieu A, et al. Blood salvage autotransfusion during transplantation for hepatocarcinoma: does it increase the risk of neoplastic recurrence? Transpl Int 2005; 18: 1236-9. https://doi.org/10.1111/j.1432-2277.2005.00207.x
  86. Waters JH, Biscotti C, Potter PS, Phillipson E. Amniotic fluid removal during cell salvage in the cesarean section patient. Anesthesiology 2000; 92: 1531-6. https://doi.org/10.1097/00000542-200006000-00008
  87. Sullivan I, Faulds J, Ralph C. Contamination of salvaged maternal blood by amniotic fluid and fetal red cells during elective Caesarean section. Br J Anaesth 2008; 101: 225-9. https://doi.org/10.1093/bja/aen135
  88. Ozmen V, McSwain NE Jr, Nichols RL, Smith J, Flint LM. Autotransfusion of potentially culture-positive blood (CPB) in abdominal trauma: preliminary data from a prospective study. J Trauma 1992; 32: 36-9. https://doi.org/10.1097/00005373-199201000-00008
  89. Bowley DM, Barker P, Boffard KD. Intraoperative blood salvage in penetrating abdominal trauma: a randomised, controlled trial. World J Surg 2006; 30: 1074-80. https://doi.org/10.1007/s00268-005-0466-2
  90. Sair M, Etherington PJ, Peter Winlove C, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med 2001; 29: 1343-9. https://doi.org/10.1097/00003246-200107000-00008
  91. Wiesen AR, Hospenthal DR, Byrd JC, Glass KL, Howard RS, Diehl LF. Equilibration of hemoglobin concentration after transfusion in medical inpatients not actively bleeding. Ann Intern Med 1994; 121: 278-30. https://doi.org/10.7326/0003-4819-121-4-199408150-00009
  92. Elizalde JI, Clemente J, Marin JL, Panes J, Aragon B, Mas A, et al. Early changes in hemoglobin and hematocrit levels after packed red cell transfusion in patients with acute anemia. Transfusion 1997; 37: 573-6. https://doi.org/10.1046/j.1537-2995.1997.37697335150.x
  93. Salisbury AC, Reid KJ, Alexander KP, Masoudi FA, Lai SM, Chan PS, et al. Diagnostic blood loss from phlebotomy and hospital-acquired anemia during acute myocardial infarction. Arch Intern Med 2011; 171: 1646-53. https://doi.org/10.1001/archinternmed.2011.361
  94. Stefanini M. Iatrogenic anemia (can it be prevented?). J Thromb Haemost 2014; 12: 1591. https://doi.org/10.1111/jth.12642
  95. Bux J, Becker F, Seeger W, Kilpatrick D, Chapman J, Waters A. Transfusion-related acute lung injury due to HLA-A2-specific antibodies in recipient and NB1-specific antibodies in donor blood. Br J Haematol 1996; 93: 707-13. https://doi.org/10.1046/j.1365-2141.1996.d01-1703.x
  96. Yasuda H, Ohto H, Yamaguchi O, Sakuma S, Suzuki T, Mita M, et al. Three episodes of delayed hemolytic transfusion reactions due to multiple red cell antibodies, anti-Di, anti-Jk and anti-E. Transfus Sci 2000; 23: 107-12. https://doi.org/10.1016/S0955-3886(00)00074-6
  97. Chung YT, Wu YC, Chen YH. Postoperative pulmonary edema, transfusion-related?--a case report. Acta Anaesthesiol Sin 2003; 41: 43-6.
  98. Chelemer SB, Prato BS, Cox PM Jr, O'Connor GT, Morton JR. Association of bacterial infection and red blood cell transfusion after coronary artery bypass surgery. Ann Thorac Surg 2002; 73: 138-42. https://doi.org/10.1016/S0003-4975(01)03308-2
  99. Sreeram GM, Welsby IJ, Sharma AD, Phillips-Bute B, Smith PK, Slaughter TF. Infectious complications after cardiac surgery: lack of association with fresh frozen plasma or platelet transfusions. J Cardiothorac Vasc Anesth 2005; 19: 430-4. https://doi.org/10.1053/j.jvca.2005.05.001
  100. Koch CG, Li L, Duncan AI, Mihaljevic T, Cosgrove DM, Loop FD, et al. Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit Care Med 2006; 34: 1608-16. https://doi.org/10.1097/01.CCM.0000217920.48559.D8
  101. Murphy GJ, Reeves BC, Rogers CA, Rizvi SI, Culliford L, Angelini GD. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation 2007; 116: 2544-52. https://doi.org/10.1161/CIRCULATIONAHA.107.698977
  102. Fung MK, Grossman BJ, Hillyer CD, Westhoff CM. Technical Manual. 18th ed. Bethesda, AABB Press. 2014, pp 547-8.
  103. Davenport R, Manson J, De'Ath H, Platton S, Coates A, Allard S, et al. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med 2011; 39: 2652-8. https://doi.org/10.1097/ccm.0b013e3182281af5
  104. McCrath DJ, Cerboni E, Frumento RJ, Hirsh AL, Bennett-Guerrero E. Thromboelastography maximum amplitude predicts postoperative thrombotic complications including myocardial infarction. Anesth Analg 2005; 100: 1576-83. https://doi.org/10.1213/01.ANE.0000155290.86795.12
  105. Leemann H, Lustenberger T, Talving P, Kobayashi L, Bukur M, Brenni M, et al. The role of rotation thromboelastometry in early prediction of massive transfusion. J Trauma 2010; 69: 1403-8. https://doi.org/10.1097/TA.0b013e3181faaa25
  106. Gorlinger K, Dirkmann D, Hanke AA, Kamler M, Kottenberg E, Thielmann M, et al. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: a retrospective, single-center cohort study. Anesthesiology 2011; 115: 1179-91. https://doi.org/10.1097/aln.0b013e31823497dd
  107. Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography ($TEG^{(R)}$) and rotational thromboelastometry ($ROTEM^{(R)}$) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care 2014; 18: 518. https://doi.org/10.1186/s13054-014-0518-9
  108. Hunt H, Stanworth S, Curry N, Woolley T, Cooper C, Ukoumunne O, et al. Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for trauma induced coagulopathy in adult trauma patients with bleeding. Cochrane Database Syst Rev 2015; (2): CD010438.
  109. Holcomb JB, Minei KM, Scerbo ML, Radwan ZA, Wade CE, Kozar RA, et al. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients. Ann Surg 2012; 256: 476-86. https://doi.org/10.1097/SLA.0b013e3182658180
  110. Gauss T, Hamada S, Jurcisin I, Dahmani S, Boudaoud L, Mantz J, et al. Limits of agreement between measures obtained from standard laboratory and the point-of-care device Hemochron Signature Elite(R) during acute haemorrhage. Br J Anaesth 2014; 112: 514-20. https://doi.org/10.1093/bja/aet384
  111. Solomon C, Traintinger S, Ziegler B, Hanke A, Rahe-Meyer N, Voelckel W, et al. Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost 2011; 106: 322-30. https://doi.org/10.1160/TH11-03-0175

Cited by

  1. A randomised trial evaluating the effect of intraoperative iron administration vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-72827-5
  2. Effect of patient blood management system and feedback programme on appropriateness of transfusion: An experience of Asia's first Bloodless Medicine Center on a hospital basis vol.31, pp.1, 2019, https://doi.org/10.1111/tme.12754
  3. Effect of Intra- and Post-Operative Fluid and Blood Volume on Postoperative Pulmonary Edema in Patients with Intraoperative Massive Bleeding vol.10, pp.18, 2019, https://doi.org/10.3390/jcm10184224