DOI QR코드

DOI QR Code

Design formulas for vibration control of taut cables using passive MR dampers

  • Duan, Yuanfeng (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Ni, Yi-Qing (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Zhang, Hongmei (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Spencer, Billie.F. Jr. (Department of Civil and Environmental Engineering, The University of Illinois at Urbana-Champaign) ;
  • Ko, Jan-Ming (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Fang, Yi (College of Civil Engineering and Architecture, Zhejiang University)
  • Received : 2018.08.11
  • Accepted : 2019.02.27
  • Published : 2019.06.25

Abstract

Using magnetorheological (MR) dampers in multiswitch open-loop control mode has been shown to be cost-effective for cable vibration mitigation. In this paper, a method for analyzing the damping performance of taut cables incorporating MR dampers in open-loop control mode is developed considering the effects of damping coefficient, damper stiffness, damper mass, and stiffness of the damper support. Making use of a three-element model of MR dampers and complex modal analysis, both numerical and asymptotic solutions are obtained. An analytical expression is obtained from the asymptotic solution to evaluate the equivalent damping ratio of the cable-damper system in the open-loop control mode. The individual and combined effects of the damping coefficient, damper stiffness, damper mass and stiffness of damper support on vibration control effectiveness are investigated in detail. The main thrust of the present study is to derive a general formula explicitly relating the normalized system damping ratio and the normalized damper parameters in consideration of all concerned effects, which can be easily used for the design of MR dampers to achieve optimal open-loop vibration control of taut cables.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Ministry of Science and Technology of China, Council of the Hong Kong Special Administrative Region, The Hong Kong Polytechnic University

References

  1. Butz, T. and von Stryk, O. (2002), "Modelling and simulation of electro- and magnetorheological fluid dampers", ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 82(1), 3-20. https://doi.org/10.1002/1521-4001(200201)82:1<3::AIDZAMM3>3.0.CO;2-O.
  2. Chen, Z.H., Lam, K.H. and Ni, Y.Q. (2016), "Enhanced damping for bridge cables using a self-sensing MR damper", Smart Mater. Struct., 25(8), 085019. https://doi.org/10.1088/0964-1726/25/8/085019
  3. Chen, Z.Q., Wang, X.Y., Ko, J.M., Ni, Y.Q., Spencer, B.F., Jr., Yang, G. and Hu, J.H. (2004), "MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge", Wind Struct., 7(5), 293-304. http://dx.doi.org/10.12989/was.2004.7.5.293.
  4. Duan, Y.F. (2004), Vibration Control of Stay Cables Using Semiactive Magneto-rheological (MR) Dampers, PhD thesis, Hong Kong: Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong.
  5. Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2006), "Cable vibration control using Magneto-rheological (MR) dampers", J. Intel. Mat. Syst. Str., 17(4), 321-325. https://doi.org/10.1142/9789812702197_0121.
  6. Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), "State-derivative feedback control of cable vibration using semiactive magnetorheological dampers", Comput.-Aided Civil Infrastruct. Eng., 20, 431-449. https://doi.org/10.1111/j.1467-8667.2005.00396.x.
  7. Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer, B.F., Jr., Ko, J.M. and Dong S.H. (2019), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Accepted.
  8. Duan, Y.F., Tao, J.J., Zhang, H.M., Wang, S.M. and Yun C.B. (2018), "Real-time hybrid simulation based on vector form intrinsic finite element and field programmable gate array", Struct. Control Health Monit., 26(1), e2277;https://doi.org/10.1002/stc.2277.
  9. Guan, X.C., Huang Y., Li, H. and Ou, J.P. (2012), "Adaptive MR damper cable control system based on piezoelectric power harvesting", Smart Struct. Syst., 10(1), 33-46. https://doi.org/10.12989/sss.2012.10.1.033.
  10. Hikami, Y. and Shiraishi, N. (1988), "Rain-wind induced vibrations of cables in cable stayed bridges", J. Wind Eng. Ind. Aerod., 29, 409-418. https://doi.org/10.1016/0167-6105(88)90179-1
  11. Huang, H.W., Liu, J.Y. and Sun, L.M. (2015), "Full-scale experimental verification on the vibration control of stay cable using optimally tuned MR damper", Smart Struct. Syst., 16(6), 1003-1021. https://doi.org/10.12989/sss.2015.16.6.1003.
  12. Huang, H.W., Sun, L.M and Jiang X.L. (2012), "Vibration mitigation of stay cable using optimally tuned MR damper", Smart Struct. Syst., 9(1), 35-53. http://dx.doi.org/10.12989/sss.2012.9.1.035.
  13. Huang, Z.H. and Jones N.P. (2011), "Damping of taut-cable systems: effects of linear elastic spring support", J. Eng. Mech., 137(7), 512-518. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000252.
  14. Irwin, P.A. (1997), "Wind vibrations of cables on cable-stayed bridges", (Eds., Kempner, L. Jr., and Brown, C.B.), editors. Building to Last Structures Congress: Proceedings of the 15th Structures Congress, New York: American Society of Civil Engineers, 383-387.
  15. Johnson, E.A., Baker, G.A., Spencer Jr. B.F. and Fujino, Y. (2007), "Semiactive damping of stay cables", J. Eng. Mech. - ASCE, 133, 1-11. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(1).
  16. Johnson, E.A., Christenson, R.E. and Spencer, Jr. B.F. (2003), "Semiactive damping of cables with sag", Comput. - Aided Civil Infrastruct. Eng., 18(2), 132-146. https://doi.org/10.1111/1467-8667.00305.
  17. Johnson, E.A., Spencer, Jr. B.F. and Fujino, Y. (1999), "Semiactive damping of stay cables: a preliminary study", Proceedings of the 17th International Modal Analysis Conference, Society for Experimental Mechanics, 417-423.
  18. Jung, H.J., Spencer, Jr. B.F., Ni, Y.Q. and Lee, I.W. (2004), "Stateof-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., 17, 493-526. http://dx.doi.org/10.12989/sem.2004.17.3_4.493.
  19. Kim, I.H., Jung, H.J. and Koo J.H. (2010), "Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable", Smart Mater. Struct., 19(11), 11527.
  20. Ko, J.M., Ni, Y.Q., Chen, Z.Q. and Spencer, Jr. B.F. (2003), "Implementation of MR dampers to Dongting Lake Bridge for cable vibration mitigation", In: Casciati F, editor. Proceedings of the 3rd World Conference on Structural Control, Chichester, England: John Wiley & Sons, 777-786.
  21. Kovacs, I. (1982), "Zur Frage der seilschwingungen und der seildampfung", Die Bautechnik, 10, 325-332, (in German).
  22. Krenk, S. (2004), "Complex modes and frequencies in damped structural vibrations", J. Sound Vib., 270(4-5), 981-996. https://doi.org/10.1016/S0022-460X(03)00768-5.
  23. Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech. - ASME, 67(4), 772-776. doi:10.1115/1.1322037.
  24. Krenk, S. and Hogsberg, J.R. (2005), "Damping of cables by a transverse force", J. Eng. Mech. - ASCE, 131, 340-348. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(340).
  25. Krenk, S. and Nielsen, S.R.K. (2002), "Vibrations of a shallow cable with a viscous damper", Proceedings of the Royal Society of London, Series A, 458, 339-357. https://doi.org/10.1098/rspa.2001.0879
  26. Li, H., Liu, M., Li, J.H., Guan, X.C. and Ou, J.P. (2007), "Vibration control of stay cables of the Shandong Binzhou Yellow River Highway Bridge using Magnetorheological fluid dampers", J. Bridge Eng., 12(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(401).
  27. Lu, L. and Duan, Y.F., Spencer, B.F. Jr., Lu, X.L. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Structural Control Health Monit., 24, e1986, doi:10.1002/stc.1986.
  28. Main, J.A. and Jones, N.P. (2001), "Evaluation of viscous dampers for stay-cable vibration mitigation", J. Bridge Eng. - ASCE, 6(6), 385-397. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(385).
  29. Main, J.A. and Jones, N.P. (2002a), "Free vibrations of taut cable with attached damper. I: linear viscous damper", J. Eng. Mech. - ASCE, 128(10), 1062-1071. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1062).
  30. Main, J.A. and Jones, N.P. (2002b), "Free vibrations of taut cable with attached damper. II: Nonlinear damper", J. Eng. Mech. - ASCE, 128(10), 1072-1081. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1072).
  31. Matsumoto, M., Saitoh, T., Kitazawa, M., Shirato, H. and Nishizaki, T. (1995), "Response characteristics of rain-wind induced vibration of stay-cables of cable- stayed bridges", J. Wind Eng. Ind. Aerod., 57(2-3), 323-333. https://doi.org/10.1016/0167-6105(95)00010-O.
  32. Matsumoto, M., Shiraishi, N. and Shirato, H. (1992), "Rain-wind induced vibration of cables of cable-stayed bridges", J. Wind Eng. Ind. Aerod., 41-44, 2011-22. https://doi.org/10.1016/0167-6105(92)90628-N.
  33. Miyata, T. (1991), "Design considerations for wind effects on long-span cable-stayed bridges", (Eds., Ito, M., Fujino, Y., Miyata, T., Narita, N.), Cable-Stayed Bridges: Recent Developments and their Future, Amsterdam: Elsevier, 235-256.
  34. Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002), "Neuro-control of cable vibration using semi-active magneto-rheological dampers", Eng. Struct., 24(3), 295-307. https://doi.org/10.1016/S0141-0296(01)00096-7.
  35. Ni, Y.Q., Wang, X.Y., Chen, Z.Q. and Ko, J.M. (2007), "Field observations of rain-wind-induced cable vibration in cablestayed Dongting Lake Bridge", J. Wind Eng. Ind. Aerod., 95(5), 303-328. https://doi.org/10.1016/j.jweia.2006.07.001.
  36. Or, S.W., Duan, Y.F., Ni, Y.Q., Chen, Z.H. and Lam, K.H. (2008), "Development of Magnetorheological dampers with embedded piezoelectric force sensors for structural vibration control", J. Intel. Mat. Syst. Str., 19 (11), 1327-1338. https://doi.org/10.1177/1045389X07085673.
  37. Ou, J.P. (2003), "Some recent advances of intelligent health monitoring systems for civil infrastructures in mainland China", (Eds., Wu, Z.S. and Abe, M.), Structural Health Monitoring and Intelligent Infrastructure, Netherlands: Balkema, 131-144.
  38. Pacheco, B.M. and Fujino, Y. (1993), "Keeping cables calm", ASCE Civil Eng., 63(10), 56-58.
  39. Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng.- ASCE, 119, 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)
  40. Persoon, A.J. and Noorlander, K. (1999), "Full-scale measurements on the Erasmus Bridge after rain/wind induced cable vibrations", (Eds., Larsen, A., Larose, G.L. and Livesey, F.M.), Wind Engineering into the 21st Century. Rotterdam: Balkema, 1019-1926.
  41. Poston, R.W. (1998), "Cable-stay conundrum", ASCE Civil Eng., 68(8), 58-61.
  42. Powell, J.A. (1994), "Modeling the oscillatory response of an electrorheological fluid", Smart Mater. Struct., 3(4), 416-438. https://doi.org/10.1088/0964-1726/3/4/005
  43. Spencer, Jr. B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech. - ASCE, 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230).
  44. Sulekh, A. (1990), Non-Dimensionalized Curves for Modal Damping in Stay Cables with Viscous Dampers, Master thesis, Japan: Department of Civil Engineering, University of Tokyo.
  45. Tanaka, H. (2003), "Aerodynamics of cables", Proceedings of the 5th International Symposium on Cable Dynamics. Belgium: AIM, 11-25.
  46. Takano, H., Ogasawara, M., Ito, N., Shimosato, T., Takeda, K. and Murakami, T. (1997), "Vibrational damper for cables of the Tsurumi Tsubasa Bridge", J. Wind Eng. Ind. Aerod., 69-71, 807-818. https://doi.org/10.1016/S0167-6105(97)00207-9.
  47. Verwiebe, C. (1998), "Rain-wind-induced vibrations of cables and bars", (Eds., Larsen, A. and Esdahl, S.), Bridge Aerodynamics: Proceedings of the International Symposium on Advances in Bridge Aerodynamics. Rotterdam: Balkema, 255-263.
  48. Virlogeux, M. (1998), "Cable vibrations in cable-stayed bridges", (Eds., Larsen, A. and Esdahl, S.), Bridge aerodynamics: Proceedings of the International Symposium on Advances in Bridge Aerodynamics. Rotterdam: Balkema, 213-233.
  49. Wang, Z.H., Chen, Z.H., Gao, H. and Wang, H. (2018), "Development of a self-powered magnetorheological damper system for cable vibration control", Appl. Sci. -Basel, 8(1), 118. https://doi.org/10.3390/app8010118.
  50. Wang, Z.H, Xu, Y.W., Gao, H., Chen, Z.Q., Xu, K. and Zhao S.B. (2019), "Vibration control of a stay cable with a rotary electromagnetic inertial mass damper", Smart Struct. Syst., Accepted.
  51. Wang, W., Hua, X. and Wang X. (2019), "Mechanical behavior of magnetorheological dampers after long-term operation in a cable vibration control system", Struct. Control Health Monit., 26(1), e2280. https://doi.org/10.1002/stc.2280.
  52. Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), "Optimal design of viscous dampers for multi-mode vibration control of bridge cables", Eng. Struct., 27(5), 792-800. https://doi.org/10.1016/j.engstruct.2004.12.013.
  53. Watson, S.C. and Stafford, D. (1988), "Cables in trouble", ASCE Civil Eng., 58(4), 138-141.
  54. Weber, F., Bhowmik, S. and Hogsberg, J. (2014), "Extended neural network-based scheme for real-time force tracking with magnetorheological dampers", Struct. Control Health Monit., 21(2), 225-247. https://doi.org/10.1002/stc.1569.
  55. Weber, F. and Boston, C. (2010), "Energy based optimization of viscous-friction dampers on cables", Smart Mater. Struct., 19(4), 045025. https://doi.org/10.1088/0964-1726/19/4/045025
  56. Weber, F., Distl, H. and Feltrin, G. (2009), "Cycle energy control of magnetorheological dampers on cables", Smart Mater. Struct., 18(1), 015005. https://doi.org/10.1088/0964-1726/18/1/015005
  57. Wu, W.J. and Cai, C.S. (2010), "Cable vibration control with a semiactive MR damper-numerical simulation and experimental verification", Struct. Eng. Mech., 34(5), 611-623. https://doi.org/10.12989/sem.2010.34.5.611.
  58. Xu, Y.L. and Zhou, H.J. (2007), "Damping cable vibration for a cable-stayed bridge using adjustable fluid dampers", J. Sound Vib., 306(1-2), 349-360. https://doi.org/10.1016/j.jsv.2007.05.032
  59. Yamada, H. (1997), "Control of wind-induced cable vibrations from a viewpoint of the wind resistant design of cable-stayed bridges", Proceedings of International Seminar on Cable Dynamics. Tokyo: Japan Association for Wind Engineering, 129-138.
  60. Yamaguchi, H. and Fujino, Y. (1998), "Stayed cable dynamics and its vibration control. In: Larsen A., Esdahl S, editors", Bridge aerodynamics: Proceedings of the International Symposium on Advances in Bridge Aerodynamics. Rotterdam: Balkema, 235-253.
  61. Zhao, M. and Zhu, W.Q. (2011), "Stochastic optimal semi-active control of stay cables by using magneto-rheological damper", J. Vib. Control, 17(13), 1921-1929. https://doi.org/10.1177/1077546310371263.
  62. Zhou, H.J., Huang X.J., Xiang N., He J.W., Sun, L.M. and Xing, F. (2018), "Free vibration of a taut cable with a damper and a concentrated mass", Struct. Control Health Monit., 25(11), 1-21. https://doi.org/10.1002/stc.2251.
  63. Zhou, H.J., Xiang, N. and Huang, X. (2018), "Full-scale test of dampers for stay cable vibration mitigation and improvement measures", Struct. Monit. Maint., 5(4), 489-506. https://doi.org/10.12989/smm.2018.5.4.489.
  64. Zhou, H.J. and Sun, L.M. (2013), "Damping of stay cable with passive-on magnetorheological dampers: a full-scale test", Int. J. Civil Eng., 11(3), 154-159.
  65. Zhou, H.J., Sun, L.M. and Xing, F. (2014), "Damping of full-scale stay cable with viscous damper: experiment and analysis", Adv. Struct. Eng., 17(2), 265-274. https://doi.org/10.1260/1369-4332.17.2.265.