DOI QR코드

DOI QR Code

CHEMICAL DIAGNOSTICS OF THE MASSIVE STAR CLUSTER-FORMING CLOUD G33.92+0.11. III. 13CN AND DCN

  • Received : 2019.03.05
  • Accepted : 2019.05.24
  • Published : 2019.06.30

Abstract

Using ALMA observations of the $^{13}CN$ and DCN lines in the massive star-forming region G33.92+0.11A, we investigate the CN/HCN abundance ratio, which serves as a tracer of photodissociation chemistry, over the whole observed region. Even considering the uncertainties in calculating the abundance ratio, we find high ratios (${\gg}1$) in large parts of the source, especially in the outer regions of star-forming clumps A1, A2, and A5. Regions with high CN/HCN ratios coincide with the inflows of accreted gas suggested by Liu et al. (2015). We conclude that we found strong evidence for interaction between the dense gas clumps and the accreted ambient gas which may have sequentially triggered the star formation in these clumps.

Keywords

CMHHBA_2019_v52n3_83_f0001.png 이미지

Figure 1. Continuum map at 1.3mm (after subtracting a free-free emission model, Liu et al. 2015). The intensity scale at the top is in units of Jy beam−1. The white contour line marks a continuum emission strength of 3 mJy beam−1. A1, A2, and A5 indicate the clumps containing the dust emission peaks number 1, 2, and 5 of G33.92+0.11A, respectively (Liu et al. 2012). The black cross denotes the position of the UC HII region.

CMHHBA_2019_v52n3_83_f0002.png 이미지

Figure 2. Map of the integrated intensity of DCN 3 − 2. The intensity scale (in units of Jy beam−1 km s−1) is shown at the top. The white contour outlines the continuum emission shown in Figure 1. The black cross marks the position of the UC Hii region. A sample spectrum taken at the position of the emission peak (α, δ)J2000 = (18h52m50s.42, 00°55'26''.66) is shown in the inset in the top-right corner. Its abscissa shows vlsr (in km s−1) and its ordinate shows the ux density (in K).

CMHHBA_2019_v52n3_83_f0003.png 이미지

Figure 3. Same as Figure 2 but for 13CN N = 2 − 1. The emission peak is located at (α, δ)J2000 = (18h52m50s.02, 00°55'28''.12).

CMHHBA_2019_v52n3_83_f0004.png 이미지

Figure 4. Column density ratio of CN/HCN derived from 13CN and DCN intensities. The color bar at the top shows the range of abundance ratios. The white cross marks the position of the UC Hii region. The white contour is the 0.02 Jy beam−1 km s−1 strength of the CN N = 2 line emission in Figure 3.

Table 1 Line parameters for the spectra in Figures 2 and 3 and abundances

CMHHBA_2019_v52n3_83_t0001.png 이미지

References

  1. Bakker, E. J. & Lambert, D. L. 1998, The Circumstellar Shell of the Post-Asymptotic Giant Branch Star HD 56126: The $^{12}CN/^{13}CN$ Isotope Ratio and Fractionation, ApJ, 508, 387 https://doi.org/10.1086/306403
  2. Fish, V. L., Reid, M. J., Wilner, D. J., & Churchwell, E. 2003, HI Absorption toward UC HII Regions: Distances and Galactic Structure, ApJ, 587, 701 https://doi.org/10.1086/368284
  3. Flower, D. R. & Hily-Blant, P. 2015, Hyperfine Transitions of $^{13}CN$ from Pre-protostellar Sources, MNRAS, 452, 19 https://doi.org/10.1093/mnras/stv1322
  4. Fuente, A., Martin-Pintado, J., Cernicharo, J., & Bachiller, R. 1993, A Chemical Study of the Photodissociation Region NGC 7023, A&A, 276, 473
  5. Fuente, A., Rodriguez-Franco, A., & Martin-Pintado, J. 1996, Chemistry in the High Density Molecular Interface Surrounding the Orion Nebula, A&A, 312, 599
  6. Fuente, A., Garsia-Burillo, S., Gerin, M., et al. 2005, Photon-Dominated Chemistry in the Nucleus of M82: Widespread $HOC^+$ Emission in the Inner 650 Parsec Disk, ApJ, 619, L155 https://doi.org/10.1086/427990
  7. Gerlich, D., Herbst, E., & Roueff, E. 2002, $H^{+}_{3}+HD{\rightarrow}H_2D^{+}+H_2$: Low-temperature Laboratory Measurements and Interstellar Implications, Planet. Space Sci., 50, 1275 https://doi.org/10.1016/S0032-0633(02)00094-6
  8. Gerner, T., Shirley, Y. L., Beuther, H., et al. 2015, Chemical Evolution in the Early Phases of Massive Star Formation II. Deuteration, A&A, 579, A80 https://doi.org/10.1051/0004-6361/201423989
  9. Ginard, D., Gonzalez-Garcia, M., Fuente, A., et al. 2012, Spectral Line Survey of the Ultracompact $H_{II}$ Region Monoceros R2, A&A, 543, A27 https://doi.org/10.1051/0004-6361/201118347
  10. Huggins, P. J., Glassgold, A. E., & Morris, M. 1984, CN and $C_2H$ in IRC +10216, ApJ, 279, 284 https://doi.org/10.1086/161889
  11. Irvine, W. M., Goldsmith, P. F., & Hjalmarson, A. 1987, Chemical Abundances in Molecular Clouds, in Interstellar Processes, ed. Hollenbach, D. J. & Thronson Jr., H. A. , Astrophys. Space Sci. Libr., 134, 561
  12. Jansen, D. J., van Dishoeck, E. F., Black, J. H., et al. 1995, Physical and Chemical Structure of the IC 63 Nebula II. Chemical Models, A&A, 302, 223
  13. Jorgensen, J. K., Schoier, & van Dishoeck, E. F. 2004, Imaging Chemical Differentiation around the Low-Mass Protostar L483-mm, ApJ, 416, 603
  14. Lafont, S., Lucas, R., & Omont, A. 1982, Molecular Abundances in IDC +10216, A&A, 106, 201
  15. Linsky, J. L., Brown, A., Gayley, K., et al. 1993, Goddard High-resolution Spectrograph Observations of the Local Interstellar Medium and the Deuterium/Hydrogen Ratio along the Line of Sight toward Capella, ApJ, 402, 694 https://doi.org/10.1086/172170
  16. Liu, H. B., Chen, H. V., Roman-Zuniga, C. G., et al. 2019, Investigating Fragmentation of Gas Structures in OB Cluster-forming Molecular Clump G33.92+0.11 with 1000 au Resolution Observations of ALMA, ApJ, 871, 185 https://doi.org/10.3847/1538-4357/aaf6b4
  17. Liu, H. B., Galvan-Madrid, R., Jimenez-Serra, I., et al. 2015, ALMA Resolves the Spiraling Accretion Flow in the Luminous OB Cluster-forming Region G33.92+0.11, ApJ, 804, 37 https://doi.org/10.1088/0004-637X/804/1/37
  18. Liu, H. B., Jimenez-Serra, I., Ho, P. T. P., et al. 2012, Fragmentation and OB Star Formation in High-Mass Molecular Hub-Filament Systems, ApJ, 756, 10 https://doi.org/10.1088/0004-637X/756/1/10
  19. Minh, Y. C., Kim, K.-T., Yan, C.-H., et al. 2014, Properties of the Molecular Clump and the Associated UC HII Region in the Gas Shell of the Expanding $H_{II}$ Region Sh 2-104, JKAS, 47, 179
  20. Minh, Y. C., Liu, H. B., & Galvan-Madrid, R. 2016, Chemical Diagnostics of the Massive Star Cluster-forming Cloud G33.92+0.11. I. $^{13}CS,\;CH_3OH,\;CH_3CN,\;OCS,\;H_2S,\;SO_2,\;and\;SiO$, ApJ, 824, 99 https://doi.org/10.3847/0004-637X/824/2/99
  21. Minh, Y. C., Liu, H. B., Galvan-Madrid, R., et al. 2018, Chemical Diagnostics of the Massive Star Cluster-forming Cloud G33.92+0.11. II. HDCS and DCN, ApJ, 864, 102 https://doi.org/10.3847/1538-4357/aad909
  22. Oberg, K. I., Qi, C., Fogel, J. K. J., et al. 2010, The Disk Imaging Survey of Chemistry with SMA. I. Taurus Protoplanetary Disk Data, ApJ, 720, 480 https://doi.org/10.1088/0004-637X/720/1/480
  23. Oliveira, C. M., Hebrard, G., Howk, J. C., et al. 2003, Interstellar Deuterium, Nitrogen, and Oxygen Abundances toward GD 246, WD 2331-475, HZ 21, and Lanning 23: Results from the FUSE Mission, ApJ, 587, 235 https://doi.org/10.1086/368019
  24. Parise, B., Leurini, S., Schilke, P., et al. 2009, Deuterium Chemistry in the Orion Bar PDR. "Warm" Chemistry Starring $CH_{2}D^{+}$, A&A, 508, 737 https://doi.org/10.1051/0004-6361/200912774
  25. Perez-Beaupuits, J. P., Aalto, S., & Gerebro, H., 2007, HNC, HCN and CN in Seyfert Galaxies, A&A, 476, 177 https://doi.org/10.1051/0004-6361:20078479
  26. Reipurth, B. & Yan, C.-H. 2008, in ASP Conf. Ser. 402, Handbook of Star Forming Regions: Vol. I. The Northern Sky, ed. Reipurth, B. (San Francisco, CA: ASP), 869
  27. Ren, Z., Wu, Y., Zhu, M., et al. 2012, The Molecular Emissions and the Infall Motion in the High-mass Young Stellar Object G8.68-0.37, MNRAS, 422, 1098 https://doi.org/10.1111/j.1365-2966.2012.20683.x
  28. Ritchey, A. M., Federman, S. R., & Lambert, D. L. 2018, Interstellar CN and $CH^+$ in Diffuse Molecular Clouds: $^{12}C/^{13}C$ Ratios and CN Excitation, ApJ, 728, 36
  29. Roberts, H., Fuller, G. A., Millar, T. J., et al. 2002, A Survey of [HDCO]/[$H_2CO$] and [DCN]/[HCN] Ratios Towards Low-mass Protostellar Cores, A&A, 381, 1026 https://doi.org/10.1051/0004-6361:20011596
  30. Rodgers, S. D. & Charnley, S. B. 2001, Chemical Differentiation in Regions of Massive Star Formation, ApJ, 546, 314
  31. Roueff, E., Loisin, J. C., & Hickson, K. M. 2015, Isotopic Fractionation of Carbon, Deuterium, and Nitrogen: A Full Chemical Study, A&A, 576, A99 https://doi.org/10.1051/0004-6361/201425113
  32. Sternberg, A., & Dalgarno, A. 1995, Chemistry in Dense Photon-dominated Regions, ApJS, 99, 565 https://doi.org/10.1086/192198
  33. Thi, W.-F., van Zadelhoff, G.-J., & van Dishoeck, E. F. 2004, Organic Molecules in Protoplanetary Disks around T Tauri and Herbig Ae Stars, A&A, 425, 955 https://doi.org/10.1051/0004-6361:200400026
  34. van Zadelhoff, G.-J., van Dishoeck, E. F., Thi, W. F., & Blake, G. A. 2001, Submillimeter Lines from Circumstellar Disks around Pre-main Sequence Stars, A&A, 377, 566 https://doi.org/10.1051/0004-6361:20011137
  35. Wilson, T. L. & Rood, R. T. 1994, Abundances in the Interstellar Medium, ARAA, 32, 191 https://doi.org/10.1146/annurev.aa.32.090194.001203
  36. Zinnecker, H. & Yorke, H. W. 2007, Toward Understanding Massive Star Formation, ARAA, 45, 481 https://doi.org/10.1146/annurev.astro.44.051905.092549