DOI QR코드

DOI QR Code

Carbon Dioxide Storage and Calcium Carbonate Production through Indirect Carbonation Using Paper Sludge Ash and Chelating Reagents

제지슬러지소각재 및 킬레이트제 활용 간접탄산화 방법을 통한 이산화탄소 저장 및 탄산칼슘 생성

  • Jeon, Junhyeok (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Kim, Myoung-Jin (Department of Environmental Engineering, Korea Maritime and Ocean University)
  • 전준혁 (한국해양대학교 해양과학기술융합학과) ;
  • 김명진 (한국해양대학교 환경공학과)
  • Received : 2019.04.12
  • Accepted : 2019.05.28
  • Published : 2019.06.30

Abstract

In this study, we conducted experiments to store $CO_2$ and produce $CaCO_3$ through indirect carbonation using paper sludge ash (PSA) and three chelating reagents (fumarate, IDA and EDTA). Fumarate and IDA used as solvents could facilitate the indirect carbonation reaction to store more $CO_2$ than water. When 0.1 M fumarate and IDA were used, $CO_2$ storage was 63 and $89kg-CO_2/ton-PSA$, respectively, and $CaCO_3$ yield was 144 and $202kg-CaCO_3/ton-PSA$. For the case of EDTA, however, the carbonation was hardly progressed. As either the concentration or Ca-ligand stabilization constant of each chelating reagent increased, the calcium extraction efficiency from PSA increased. In addition, the carbonation efficiency was influenced by the Ca-ligand stabilization constant. As the Ca-ligand stabilization constant increased, more calcium could be extracted from the PSA. With the constant larger than that of $CaCO_3$ ($10^{8.35}$), however, the carbonation reaction was not proceeded.

본 연구에서는 제지슬러지소각재(PSA)와 세 가지 킬레이트제(fumarate, IDA, EDTA)를 가지고 간접탄산화에 의해 이산화탄소를 저장하고 탄산칼슘을 생성하는 실험을 진행하였다. Fumarate와 IDA를 용제로 사용하면 간접탄산화반응이 촉진되어 물을 사용했을 때보다 더 많은 양의 이산화탄소를 저장하였다. 0.1 M 농도의 fumarate와 IDA를 사용했을 때, 이산화탄소 저장량은 각각 63, $89kg-CO_2/ton-PSA$이었고, 탄산칼슘 생성량은 각각 144, $202kg-CaCO_3/ton-PSA$이었다. 그러나 EDTA를 용제로 사용한 경우에는 탄산화반응이 거의 진행되지 않았다. PSA로부터 칼슘용출효율은 킬레이트제의 농도가 높고 Ca-ligand 안정화상수가 클수록 증가하였다. 또한 탄산화효율도 Ca-ligand 안정화상수의 영향을 받았다. Ca-ligand 안정화상수가 클수록 P SA로부터 더 많은 칼슘이 용출되었지만, 이 값이 탄산칼슘의 안정화상수($10^{8.35}$)보다 크면 탄산화반응이 진행되기 어려웠다.

Keywords

RSOCB3_2019_v28n3_35_f0001.png 이미지

Fig. 1. Constitutional formulas of three ligands: (a) fumarate, (b) IDA, and (c) EDTA.

RSOCB3_2019_v28n3_35_f0002.png 이미지

Fig. 2. Schematic diagram of the carbonation reactor: 1. CO2 gas cylinder, 2. gas regulator, 3. needle valve, 4. digital mass flow meter, 5. fine control valve, 6. pH meter, 7. pH electrode, 8. electrical stirrer, 9. CO2 outlet.

RSOCB3_2019_v28n3_35_f0003.png 이미지

Fig. 3. Variations of the (a) calcium and (b) hydroxide ion concentration of eluent with the solvent concentration.

RSOCB3_2019_v28n3_35_f0004.png 이미지

Fig. 4. Variations of the monitored pH and its time derivative with the carbonation time: (a) 0.1 M fumarate, (b) 0.1 M IDA, (c) 0.1 M EDTA, and (d) water (–●– : monitored pH, —: pH derivative curve).

RSOCB3_2019_v28n3_35_f0005.png 이미지

Fig. 5. XRD analysis of the solids obtained by using three chelating reagents and water as solvents: (a) 0.1 M fumarate, (b) 0.1 M IDA, (c) 0.1 M EDTA, (d) water, (e) calcite reference, and (f) vaterite reference.

RSOCB3_2019_v28n3_35_f0006.png 이미지

Fig. 6. SEM analysis of the solids obtained by using three chelating reagents and water as solvents: (a) 0.1 M fumarate, (b) 0.1 M IDA, (c) 0.1 M EDTA, and (d) water.

RSOCB3_2019_v28n3_35_f0007.png 이미지

Fig. 7. TGA results of the solids obtained by using three chelating reagents and water as solvents: (a) 0.1 M fumarate, (b) 0.1 M IDA, (c) 0.1 M EDTA, and (d) water.

Table 1. Comparison of the calcium extraction efficiency, carbonation efficiency, CO2 storage, CaCO3 yield, and CaCO3 characteristics (morphology, particle size, and purity) among the three chelating reagents and water used as solvents

RSOCB3_2019_v28n3_35_t0001.png 이미지

References

  1. Shaffer, G., 2010 : Long-term effectiveness and consequences of carbon dioxide sequestration, Nat. Geosci., 3, pp.464-467. https://doi.org/10.1038/ngeo896
  2. Haszeldine, R. S., 2009 : Carbon capture and storage: How green can black be?, Science, 325(5948), pp.1647-1652. https://doi.org/10.1126/science.1172246
  3. Gibbins, J. and Chalmers, H., 2008 : Carbon capture and storage, Energy Policy, 36(12), pp.4317-4322. https://doi.org/10.1016/j.enpol.2008.09.058
  4. Pires, J. C. M., Martins, F. G., Aluim-Ferraz, M. C. M., and Simoes, M., 2011 : Recent developments on carbon capture and storage: An overview, Chem. Eng. Res. Des., 89(9), pp.1446-1460. https://doi.org/10.1016/j.cherd.2011.01.028
  5. Prigiobbe, V., Polettini, A., and Baciocchi, R., 2009 : Gas-solid carbonation kinetics of Air Pollution Control residues for $CO_2$ storage, Chem. Eng. J., 148(2-3), pp.270-278. https://doi.org/10.1016/j.cej.2008.08.031
  6. Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., and Maroto-Valer, M. M., 2014 : A review of mineral carbonation technologies to sequester $CO_2$, Chem. Soc. Rev., 43, pp.8049-8080. https://doi.org/10.1039/C4CS00035H
  7. Azdarpour, A. et al., 2015 : A review on carbon dioxide mineral carbonation through pH-swing process, Chem. Eng. J., 279, pp.615-630. https://doi.org/10.1016/j.cej.2015.05.064
  8. Markewitz, P. et al., 2012 : Worldwide innovations in the development of carbon capture technologies and the utilization of $CO_2$, Energy Environ. Sci., 5, pp.7281-7305. https://doi.org/10.1039/c2ee03403d
  9. Lackner, K. S. et al., 1995 : Carbon dioxide disposal in carbonate minerals, Energy, 20(11), pp.1153-1170. https://doi.org/10.1016/0360-5442(95)00071-N
  10. Eloneva, S. et al., 2008 : Fixation of $CO_2$ by carbonating calcium derived from blast furnace slag, Energy, 9, pp.1461-1467. https://doi.org/10.1016/j.energy.2008.05.003
  11. Han, S. J., Im, H. J., and Wee, J. H., 2015 : Leaching and indirect mineral carbonation performance of coal fly ashwater solution system, Appl. Energy, 142, pp.274-282. https://doi.org/10.1016/j.apenergy.2014.12.074
  12. Kim, M. J. et al., 2017 : Optimum conditions for extracting Ca from CKD to store $CO_2$ through indirect mineral carbonation, KSCE Journal of Civil Engineering, 21(3), pp.629-635. https://doi.org/10.1007/s12205-016-0913-7
  13. Zhao, H. et al., 2013 : Tuning the dissolution kinetics of wollastonite via chelating agents for $CO_2$ sequestration with integrated synthesis of precipitated calcium carbonates, Phys. Chem. Chem. Phys., 36, pp.15185-15192. https://doi.org/10.1039/c3cp52459k
  14. Perez-Moreno, S. M., Gazquez, M. J., and Bolivar, J. P., 2015 : $CO_2$ sequestration by indirect carbonation of artificial gypsum generated in the manufacture of titanium dioxide pigments, Chem. Eng. J., 15, pp.737-746. https://doi.org/10.1016/j.cej.2014.10.023
  15. Azdarpour, A. et al., 2015 : Mineral carbonation of red gypsum via pH-swing process: Effect of $CO_2$ pressure on the efficiency and products characteristics, Chem. Eng. J., 264, pp.425-436. https://doi.org/10.1016/j.cej.2014.11.125
  16. Mun, M. et al., 2017 : Investigation of the $CO_2$ sequestration by indirect aqueous carbonation of waste cement, American Journal of Climate Change, 6(1), pp.132-150. https://doi.org/10.4236/ajcc.2017.61008
  17. Li, Y. et al., 2017 : Enhanced $CO_2$ capture capacity of limestone by discontinuous addition of hydrogen chloride in carbonation at calcium looping conditions, Chem. Eng. J., 316, pp.438-448. https://doi.org/10.1016/j.cej.2017.01.127
  18. Rahmani, O., 2018 : $CO_2$ sequestration by indirect mineral carbonation of industrial waste red gypsum, J. $CO_2$ Util., 27, pp.374-380. https://doi.org/10.1016/j.jcou.2018.08.017
  19. Jo, H. et al., 2014 : Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions, Chem. Eng. J., 254, pp.313-323. https://doi.org/10.1016/j.cej.2014.05.129
  20. Kim, M. J. and Kim, D., 2018 : Maximization of $CO_2$ storage for various solvent types in indirect carbonation using paper sludge ash, Environ. Sci. Pollut. Res., 25(30), pp.30101-30109. https://doi.org/10.1007/s11356-018-2970-6
  21. KR Patent No. 10187792 2018 : Methods for production of high-purity calcium carbonate and reuse of solvent through indirect carbonation of alkali industrial byproducts.
  22. Pokrovsky, O. S. et al., 2009 : Effect of organic ligands and heterotrophic bacteria on wollastonite dissolution kinetics, Am. J. Sci., 309, pp.731-772. https://doi.org/10.2475/08.2009.05
  23. Krevor, S. C. and Lackner, K. S., 2011 : Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration, Int. J. Greenhouse Gas Control, 5(4), pp.1073-1080. https://doi.org/10.1016/j.ijggc.2011.01.006
  24. Song, K. et al., 2016 : Effect of polyacrylic acid on direct aqueous mineral carbonation of flue gas desulfurization gypsum, Chem. Eng. J., 301, pp.51-57. https://doi.org/10.1016/j.cej.2016.04.142
  25. Ghoorah, M. et al., 2014 : Selection of acid for weak acid processing of wollastonite for mineralisation of $CO_2$, Fuel, 122, pp.277-286. https://doi.org/10.1016/j.fuel.2014.01.015
  26. Baldyga, J., Henczka, M., and Sokolnicka, K., 2011 : Mineral carbonation accelerated by dicarboxylic acids as a disposal process of carbon dioxide, Chem. Eng. Res. Des., 89(9), pp.1841-1854. https://doi.org/10.1016/j.cherd.2011.02.034
  27. Swaddle, T. W., 1997 : Inorganic Chemistry: an industrial and environmental perspective, Academic Press, San Diego.
  28. Park, A. H. A., Jadhav, R., and Fan, L. S., 2008 : $CO_2$ Mineral Sequestration: Chemically Enhanced Aqueous Carbonation of Serpentine, The Canadian Journal of Chemical Engineering, 81(3-4), pp.885-890. https://doi.org/10.1002/cjce.5450810373
  29. Kim, H. R. et al., 2009 : Synthesis of Iron-Based Chemical Looping Sorbents Integrated with pH Swing Carbon Mineral Sequestration, J. Nanosci. Nanotechnol., 9, pp.7422-7427.
  30. Meyer, N. A. et al., 2014 : Mineral carbonation of PGM mine tailings for $CO_2$ storage in South Africa: A case study, Miner Eng., 59, pp.45-51. https://doi.org/10.1016/j.mineng.2013.10.014
  31. Cho, T. and Kim, M. J., 2018 : Synthesis of magnesium sulfate from seawater using alkaline industrial wastes, sulfuric acid, and organic solvents, Sep. Sci. Technol., pp.1-9.
  32. Na, H. R. and Kim, M. J., 2019 : Determination of optimal conditions for magnesium recovery process from seawater desalination brine using paper sludge ash, sulfuric acid, and ethanol, Desalin Water Treat, pp.1-8.
  33. Rodriguez-Blanco, J. D., Shaw, S., and Benning, L. G., 2011 : The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, Nanoscale, 3, pp.265-271. https://doi.org/10.1039/C0NR00589D
  34. Rao, M. S., 1973 : Kinetics and mechanism of the transformation of vaterite to calcite, Bull. Chem. Soc. Jpn, 46(5), pp.1414-1417. https://doi.org/10.1246/bcsj.46.1414
  35. Huntzinger, D. N. et al., 2009 : Carbon Dioxide Sequestration in Cement Kiln Dust through Mineral Carbonation, Environ. Sci. Technol., 43(6), pp.1986-1992. https://doi.org/10.1021/es802910z
  36. Villain, G., Thiery, M., Platret, G., 2007 : Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry, Cem Concr Res, 37(8), pp.1182-1192. https://doi.org/10.1016/j.cemconres.2007.04.015

Cited by

  1. CKD 추출액내 KCl 제거를 위한 이온교환수지 조업조건 최적화 연구 vol.36, pp.4, 2019, https://doi.org/10.12925/jkocs.2019.36.4.1088