DOI QR코드

DOI QR Code

The Effects of PM10 on the Hospital Admission of Patients with Respiratory Disease in Seoul, Korea

서울지역 미세먼지가 호흡기계 질환으로 입원한 환자에 미치는 영향

  • Received : 2019.05.20
  • Accepted : 2019.06.20
  • Published : 2019.06.28

Abstract

This cohort study aimed to identify the effects of daily PM10 exposure on the hospital admission of patients with respiratory diseases, during the nine-year period (2002-2010), in Seoul, Korea. The research subjects were 13,974 patients who had been hospitalized with respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, and pneumonia. During the follow-up period, an increase of 10 ug/m3 in PM10 under the threshold of 50 ug/m3 of PM10 led to hospital admission in 1.38% of the age group younger than 15 years, 1.62% in those 65 years or older, 2.87% in patients 75 years or older and in 1.50% of pneumonia patients, 1.51% of COPD patients, and 1.55% of pneumonia and asthma patients. Under the threshold of 80 ug/m3 of PM10, there was a 3.71% increase in new patients admitted in the age group 65 years or older and 4.25% in those at least 75 years old. Our study found that high PM10 was associated with increased risk of admission of respiratory patients, especially in the elderly. People who already have a respiratory disease should refrain from exposure to particulate matter when there is a high concentration of PM10, especially older patients.

서울지역의 호흡기질환으로 입원한 환자를 대상으로 미세먼지 노출에 대한 건강영향을 평가하였다. 건강보험공단의 2002-2010년 동안 표본코호트의 만성폐쇄성 폐 질환(COPD), 천식 및 폐렴과 같은 호흡기 질환으로 입원한 13,974명의 환자를 대상자로 하였다. 추적관찰 기간동안 미세먼지 농도가 50ug/m3 이상에서 10ug/m3 증가할 때 15세 미만의 연령층에서는 1.38%, 65세 이상의 연령층에서는 1.62%, 75세 이상 연령층에서는 2.87% 호흡기질환으로 입원이 증가하였고, 폐렴환자는 1.50%, COPD 환자는 1.51%, 폐렴 및 천식환자는 1.55% 입원이 증가하였다. 또한 미세먼지가 80ug/m3 이상에서는 65세 이상 연령층에서 3.71%, 75세 이상 연령층에서 4.25% 입원환자가 증가하였다. 높은 미세먼지농도와 호흡기 질환으로 입원한 환자들과, 특히 노인에서 관련성이 높게 나타났다. 이미 호흡기 질환이 있었던 사람들, 특히 나이가 많은 환자는 고농도의 미세먼지에 노출되지 않도록 주의해야 한다.

Keywords

JKOHBZ_2019_v9n6_194_f0001.png 이미지

Fig. 1. Trends of PM10 and daily hospitalization due to respiratory disease episodes

JKOHBZ_2019_v9n6_194_f0002.png 이미지

Fig. 2. Relative risk functions of PM10 in respiratory patients for the three age groups on the lag effect in 2002–2010

Table 1. Summary of hospital admissions, weather, and air pollution in Seoul

JKOHBZ_2019_v9n6_194_t0001.png 이미지

Table 2. Percent increase (95% confidence interval) in daily outpatient count per each 10 ug/m3 increment above the age group- and disease-specific threshold

JKOHBZ_2019_v9n6_194_t0002.png 이미지

References

  1. WHO(2006). Air quality guidelines: Global update 2005. particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization.
  2. J. N. B. Bell, L. Davies, S Honour, A. Klumpp, W. Ansel & G. Klumpp. (2004). Air pollution research in london. Urban air pollution bioindication and environmental awareness, 3-16.
  3. M. L. Bell et al. (2007). Climate change, ambient ozone, and health in 50 US cities. Climate Change. 82(1-2), 61-76. https://doi.org/10.1007/s10584-006-9166-7
  4. Y. K. Lin, C. F. Chen, H. C. Yeh & Y. C. Wang. (2016). Emergency room visits associated with particulate concentration and Asian dust storms in metropolitan Taipei. Journal of Exposure Science and Environmental Epidemiology, 26(6), 104-111. https://doi.org/10.1038/jes.2015.35
  5. W. J. Requia, C. D. Higgins, M. D. Adams, M. Mohamed & P. Koutrakis. (2018). The health impacts of weekday traffic: Ahealth risk assessment of PM2.5 emissions during congested periods. Environment International, 111, 14-176. https://doi.org/10.1016/j.envint.2017.11.010
  6. H. Akaike. (1998). Information theory and an extension of the maximum likelihood principle. Selected Papers of Hirotugu Akaike, 199-213.
  7. Y. Chung et al. (2015). Mortality Related to Extreme Temperature for 15 cities in Northeast Asia. Epidemiology, 26(20), 255-262. https://doi.org/10.1097/EDE.0000000000000229
  8. Y. Choi, H. Kim & J. T. Lee. (2018). Temporal variability of short term effects of PM10 on mortality in Seooul, Korea. Science of The Total Environment, 644(10), 122-128. https://doi.org/10.1016/j.scitotenv.2018.06.275
  9. W. Ji & B Zhao. (2015). Estimation Mortality Derived from Indoor Exposre to Particles of Outdoor Origin. PLoS One, 10(4), e0124238. https://doi.org/10.1371/journal.pone.0124238
  10. E. H. Ha et al. (2009). Infant susceptibility of mortality to air pollution in Seoul, South Korea. Pediatrics, 111(2), 284-290. https://doi.org/10.1542/peds.111.2.284
  11. S. Hales, C. Salmond, G. I, Town, T. Kjellstrom & A. Woodward. (2000). Daily mortality in relation to weather and air pollution in Christchurch, New Zealand. Australian and New Zealand Journal of Public Health, 20(1), 89-91.
  12. A. Zanobetti & J. Schwartz. (2009). The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environmental Health Perspectives, 117(6), 898-903. https://doi.org/10.1289/ehp.0800108
  13. S. S. Hwang, S. H. Cho & H. J. Kwon. (2005). Effects of the severe asian dust events on daily mortality during the spring of 2002, in Seoul, Korea. Journal of Preventive Medicine and Public Health, 38(2), 197-202.
  14. J. C. Choi, M. Lee, Y. Chun, J. Kim & S. Oh. (2001). Chemical composition and source signature of spring aerosol in Seoul, Korea. Journal of geophysical research, 106(D16), 18067-18074. https://doi.org/10.1029/2001JD900090
  15. H. Lee, S. S. Park, K. W. Kim & Y. J. Kim. (2008). Source identification of PM 2.5 particles measured in Gwangju, Korea. Atmospheric Research, 88(3), 199-211. https://doi.org/10.1016/j.atmosres.2007.10.013
  16. S. E. Kim et al. (2017). Seasonal analysis of the short-term effects of air pollution on daily mortality on Northeast Asia. Science of The Total Environment, 576(17), 850-857. https://doi.org/10.1016/j.scitotenv.2016.10.036
  17. A. Faustini et el. (2011). The relationship between ambient particulate matter and respiratory mortality: a multi-city study in Italy. European Respiratory Jouranl, 38(3), 538-547. https://doi.org/10.1183/09031936.00093710
  18. P. Salvador et al. (2011). Spatial and temporal variations in PM10 and PM2. 5 across madrid metropolitan area in 1999-2008. Procedia Environmental Sciences, 4, 198-208. https://doi.org/10.1016/j.proenv.2011.03.024
  19. E. Soleimanian et al. (2019). Spatial trends and sources of PM2.5 organic carbon volatility fractions(OCx) across the Los Angeles Basin. Atmospheric Environment, 209, 201-211. https://doi.org/10.1016/j.atmosenv.2019.04.027
  20. C. Rpper, L. G. Chubb, L. Cambal, B. Tunno, J. E. Clougherty & S E, Mischler. (2015). Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications. Inhalation Toxicology, 27(13), 673-681. https://doi.org/10.3109/08958378.2015.1092185