DOI QR코드

DOI QR Code

Complete genome sequencing of Pseudomonas fluorescens NBC275, a biocontrol agent against fungal pathogens of plants and insects

식물 및 곤충의 곰팡이 병원균에 항균력을 가진 Pseudomonas fluorescens NBC275 균주의 유전체 염기서열

  • Dutta, Swarnalee (Division of Biotechnology, Chonbuk National University) ;
  • Yu, Sang-Mi (Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources) ;
  • Nagendran, Rajalingam (Division of Biotechnology, Chonbuk National University) ;
  • Jeong, Sang Chul (Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources) ;
  • Lee, Yong Hoon (Division of Biotechnology, Chonbuk National University)
  • Received : 2019.02.13
  • Accepted : 2019.03.01
  • Published : 2019.06.30

Abstract

Pseudomonas fluorescens NBC275 (Pf275) isolated from soil sample collected at riverside of Nakdonggang showed antagonistic activity against fungal pathogens of plants and insects. Here we present complete genome sequence of Pf275. The genome comprises of 6,610,362 bp with GC content of 60.9%, which includes 5,869 predicted protein-coding genes, 16 rRNAs, and 65 tRNAs. Genome analysis revealed gene clusters encoding antimicrobial secondary metabolites such as pyoverdine, 2, 4-diacetylphloroglucinol, and phenazine, which are known to play essential roles in biocontrol of diseases.

낙동강 주변에서 채취한 토양으로부터 분리한 Pseudomonas fluorescens NBC275 (Pf275) 균주는 식물과 곤충에 병을 일으키는 곰팡이류에 우수한 항균력을 보였다. 본 연구에서는 Pf275 균주의 전체염기서열을 해독하고 분석하였는데, 총 염기서열은 6,610,362 bp였고, GC 함량은 60.9%였다. 염색체는 5,869개의 단백질을 암호화하였고, 16개의 rRNA와 65개의 tRNA로 구성되어 있었다. 유전체의 분석을 통해 항균력을 나타내는 2차 대사산물을 암호화하는 유전자를 확인할 수 있었는데, Pf275 균주는 pyoverdine, 2, 4-diacetylphloroglucinol 및 phenazine 등의 항균물질을 생산하였고, 이들 대사산물에 의해 항균력 및 생물방제효과를 나타내는 것으로 판단된다.

Keywords

Table 1. The features of Pseudomonas fluorescens Pf275 genome

MSMHBQ_2019_v55n2_157_t0001.png 이미지

References

  1. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from longread SMRT sequencing data. Nat. Methods 10, 563-569. https://doi.org/10.1038/nmeth.2474
  2. Couillerot O, Combes-Meynet E, Pothier J, Bellvert F, Challita E, Poirier M, Rohr R, Comte G, Moenne-Loccoz Y, and Prigent-Combaret C. 2011. The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Microbiology 157, 1694-1705. https://doi.org/10.1099/mic.0.043943-0
  3. Couillerot O, Prigent-Combaret C, Caballero-Mellado J, and Moenne-Loccoz Y. 2009. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett. Appl. Microbiol. 48, 505-512. https://doi.org/10.1111/j.1472-765X.2009.02566.x
  4. Ghirardi S, Dessaint F, Mazurier S, Corberand T, Raaijmakers JM, Meyer JM, Dessaux Y, and Lemanceau P. 2012. Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. Microb. Ecol. 64, 725-737. https://doi.org/10.1007/s00248-012-0065-3
  5. Gliese N, Khodaverdi V, and Gorisch H. 2010. The PQQ biosynthetic operons and their transcriptional regulation in Pseudomonas aeruginosa. Arch. Microbiol. 192, 1-14. https://doi.org/10.1007/s00203-009-0523-6
  6. Haas D and Keel C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41, 117-153. https://doi.org/10.1146/annurev.phyto.41.052002.095656
  7. Hernandez-Salmeron JE, Moreno-Hagelsieb G, and Santoyo G. 2017. Genome comparison of Pseudomonas fluorescens UM270 with related fluorescent strains unveils genes involved in rhizosphere competence and colonization. J. Genomics 5, 91-98. https://doi.org/10.7150/jgen.21588
  8. Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martinez-Granero F, Barahona E, Navazo A, Sanchez-Contreras M, Moynihan JA, Muriel C, et al. 2013. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 14, 54. https://doi.org/10.1186/1471-2164-14-54
  9. Silby MW, Cerdeno-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SA, et al. 2009. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 10, R51. https://doi.org/10.1186/gb-2009-10-5-r51
  10. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, and Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614-6624. https://doi.org/10.1093/nar/gkw569

Cited by

  1. High‐throughput analysis of genes involved in biocontrol performance of Pseudomonas fluorescens NBC275 against Gray mold vol.128, pp.1, 2019, https://doi.org/10.1111/jam.14475
  2. Assessment of the Contribution of Antagonistic Secondary Metabolites to the Antifungal and Biocontrol Activities of Pseudomonas fluorescens NBC275 vol.36, pp.5, 2020, https://doi.org/10.5423/ppj.ft.08.2020.0149