DOI QR코드

DOI QR Code

Review on Graphene Oxide-based Nanofiltration Membrane

산화그래핀 기반 나노여과막의 최신 연구동향

  • Kim, Dae Woo (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김대우 (연세대학교 화공생명공학과)
  • Received : 2019.06.28
  • Accepted : 2019.06.28
  • Published : 2019.06.30

Abstract

Various two-dimensional nano materials such as graphene, zeolite, and metal-organic framework have been utilized to develop an ultra-thin high-performance membrane for water purification, gas separation, and so on. Particularly, in the case of graphene oxide, synthesis methods and thin film coating techniques have been accumulated and established since early 2000s, therefore graphene oxide has been rapidly applied to membrane field. The multi-layered graphene oxide thin film can filter molecules separately by the molecular sieving of interlayer spacing between adjacent layers, and it is also possible to separate various materials depending on the surface functional groups or the degree of interaction to intercalated materials. This review mainly focuses on the nanofiltration application of graphene oxide. The major factors affecting the separation performance of graphene oxide membrane in solvent are summarized and other technical elements required for the commercialization of graphene oxide membranes will be discussed including stability issue and fabrication method.

그래핀, 제올라이트, metal-organic frameworks (MOF)s 등 다양한 나노 소재를 이차원 나노쉬트 형태로 제조하고, 이를 이용한 초박막 고성능 분리막을 개발하고자 하는 연구가 활발히 진행되고 있다. 특히, 산화그래핀의 경우, 2000년대 초반에 관련 연구가 시작된 이후, 다양한 합성 및 박막 코팅 기술이 축적되어 있어 빠른 속도로 분리막 분야에 응용되고 있다. 다층으로 적층된 산화그래핀 박막은 층간 거리를 조절함에 따라 물리적 거름막으로 작용할 수 있으며, 또한 표면의 기능기 및 삽입된 물질과 거르는 물질 간의 상호작용을 제어함에 따라 다양한 물질의 선택적 분리가 가능하다. 본 총설에서는 산화그래핀의 나노여과막 응용분야에 관하여 중점적으로 다루고자 한다. 본고에서는, 다양한 용매 내에서 산화그래핀 박막의 분리 기작 및 성능에 영향을 미치는 핵심 요소들에 대해 요약하였으며, 그 외 산화그래핀 기반 분리막의 실질적인 상용화에 필요한 핵심 기술요소 및 개발 동향에 대하여 논하고자 한다.

Keywords

References

  1. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, and M. Tsapatsis, "Zeolite membranes - A review and comparison with MOFs", Chem. Soc. Rev., 44, 7128 (2015). https://doi.org/10.1039/C5CS00292C
  2. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide", Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/B917103G
  3. G. Liu, W. Jin, and N. Xu, "Graphene-based membranes", Chem. Soc. Rev., 44, 5016 (2015). https://doi.org/10.1039/C4CS00423J
  4. G. Eda and M. Chhowalla, "Chemically derived graphene oxide: Towards large-area thin film electronics and optoelectronics", Adv. Mater., 22, 2392 (2010). https://doi.org/10.1002/adma.200903689
  5. J. Ning, L. Hao, M. Jin, X. Qiu, Y. Shen, J. Liang, X. Zhang, B. Wang, X. Li, and L. Zhi, "A facile reduction method for roll-to-roll production of high performance graphene-based transparent conductive films", Adv. Mater., 29, 1605028 (2017). https://doi.org/10.1002/adma.201605028
  6. L. Huang, J. Chen, T. Gao, M. Zhang, Y. Li, L. Dai, L. Qu, and G. Shi, "Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration", Adv. Mater., 28, 8669 (2016). https://doi.org/10.1002/adma.201601606
  7. Y. Han, Z. Xu, and C. Gao, "Ultrathin graphene nanofiltration membrane for water purification", Adv. Funct. Mater., 23, 3693 (2013). https://doi.org/10.1002/adfm.201202601
  8. H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95 (2013). https://doi.org/10.1126/science.1236686
  9. H. W. Kim, H. W. Yoon, S. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013). https://doi.org/10.1126/science.1236098
  10. J. Huang, T. Zhuang, Q. Zhang, H. Peng, C. Chen, and F. Wei, "Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries", ACS Nano, 9, 3002 (2015). https://doi.org/10.1021/nn507178a
  11. J.-S. Kim, D. W. Kim, H.-T. Jung, and J. W. Choi, "Controlled lithium dendrite growth by as synergistic effect of multilayer graphene coating and an electrolyte additive", Chem. Mater., 27, 2780 (2015). https://doi.org/10.1021/cm503447u
  12. S. Kim, J. Choi, C. Choi, J. Heo, D. W. Kim, J. Y. Lee, Y. T. Hong, H.-T. Jung, and H.-T. Kim, "Pore-size-tuned graphene oxide frameworks as ion-selective and protective layers on hydrocarbon membranes for vanadium redox-flow batteries", Nano. Lett., 18, 3962 (2018). https://doi.org/10.1021/acs.nanolett.8b01429
  13. D. K. Lee, S. J. Kim, Y.-J. Kim, H. Choi, D. W. Kim, H.-J. Jeon, C. W. Ahn, J. W. Lee, and H.-T. Jung, "Graphene oxide/carbon nanotube bilayer flexible membrane for high-performance Li-S batteries with superior physical and electrochemical properties", Adv. Mater. Interfaces, 6, 1801992 (2019). https://doi.org/10.1002/admi.201801992
  14. Y.-H. Yang, L. Bolling, M. A. Priolo, and J. C. Grunlan, "Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films", Adv. Mater., 25, 503 (2013). https://doi.org/10.1002/adma.201202951
  15. D. W. Kim, H. Kim, M. L. Jin, and C. J. Ellison, "Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals", Carbon, 148, 28 (2019). https://doi.org/10.1016/j.carbon.2019.03.039
  16. S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, and S. M. Mahurin, "Water desalination using nanoporous single-layer graphene", Nat. Nanotechnol., 10, 459 (2015). https://doi.org/10.1038/nnano.2015.37
  17. S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728 (2012). https://doi.org/10.1038/nnano.2012.162
  18. D. Cohen-Tanugi and J. C. Grossman, "Water desalination across nanoporous graphene", Nano Lett., 12, 3602 (2012). https://doi.org/10.1021/nl3012853
  19. W. S. Mummers and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  20. J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, "Mechanical properties of monolayer graphene oxide", ACS Nano, 4, 6557 (2010). https://doi.org/10.1021/nn101781v
  21. D. Kim, D. W. Kim, H.-K. Lim, J. Jeon, H. Kim, H.-T. Jung, and H. Lee, "Intercalation of gas molecules in graphene oxide interlayer: the role of water", J. Phys. Chem. C., 118, 11142 (2014). https://doi.org/10.1021/jp5026762
  22. S. Zheng, Q. Tu, J. J. Urban, S. Li, and B. Ma, "Swelling of graphene oxide membranes in aqueous solution: Characterization of interlayer spacing and insight into water transport mechanisms", ACS Nano, 11, 6440 (2017). https://doi.org/10.1021/acsnano.7b02999
  23. D. Kim, D. W. Kim, H.-K. Lim, J. Jeon, H. Kim, H.-T. Jung, and H. Lee, "Inhibited phase behavior of gas hydrate in graphene oxide: Influences of surface and geometric constraints", Phys. Chem. Chem. Phys., 16, 22717 (2014). https://doi.org/10.1039/C4CP03263B
  24. J.-H. Jang, J. Y. Woo, J. Lee, and C.-S. Han, "Ambivalent effect of thermal reduction in mass rejection through graphene oxide membrane", Environ. Sci. Technol., 50, 10024 (2016). https://doi.org/10.1021/acs.est.6b02834
  25. D. W. Kim, J. Jang, I. Kim, Y. T. Nam, Y. Jung, and H.-T. Jung, "Revealing the role of oxygen debris and functional groups on the water flux and molecular separation of graphene oxide membrane: A combined experimental and theoretical study", J. Phys. Chem. C, 122, 17507 (2018). https://doi.org/10.1021/acs.jpcc.8b03318
  26. S. Ye and J. Feng, "The effect of sonication treatment of graphene oxide on the mechanical properties of the assembled films", RSC Adv., 6, 39681 (2016). https://doi.org/10.1039/C6RA03996K
  27. S.-W. Shin, J. S. Kim, S. J. Kim, D. W. Kim, and H.-T. Jung, "Polybenzoxazole/graphene nanocomposite for etching hardmask", J. Ind. Eng. Chem., 75, 296 (2019). https://doi.org/10.1016/j.jiec.2019.03.042
  28. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons", Nature, 458, 872 (2009). https://doi.org/10.1038/nature07872
  29. W. Gao, G. Wu, M. T. Janicke, D. A. Cullen, R. Mukundan, J. K. Baldwin, E. L. Brosha, C. Galande, P. M. Ajayan, K. L. More, A. M. Dattelbaum, and P. Zelenay, "Ozonated graphene oxide film as a proton-exchange membrane", Angew. Chem. In. ED., 53, 3588 (2014). https://doi.org/10.1002/anie.201310908
  30. D. W. Kim, J. Choi, D. Kim, and H.-T. Jung, "Enhanced water permeation based on nanoporous multilayer graphene membranes: The role of pore size and density", J. Mater. Chem. A, 4, 17773 (2016). https://doi.org/10.1039/C6TA06381K
  31. D. W. Kim, I. Kim, J. Jang, Y. T. Nam, K. Park, K. O. Kwon, K. M. Cho, J. Choi, D. Kim, K. M. Kang, S. J. Kim, Y. Jung, and H.-T. Jung, "One dimensional building blocks for molecular separation: laminated graphitic nanoribbons", Nanoscale, 9, 19114 (2017). https://doi.org/10.1039/C7NR05737G
  32. Q. Yang, Y. Su, C. Chi, C. T. Cherian, K. Huang, V. G. Kravets, F. C. Wang, J. C. Zhang, A. Pratt, A. N. Grigorenko, F. Guinea, A. K. Geim, and R. R. Nair, "Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation", Nat. Mater., 16, 1198 (2017). https://doi.org/10.1038/nmat5025
  33. A. Akbari, P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya, and M. Majumder, "Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide", Nat. Commun., 7, 10891 (2016). https://doi.org/10.1038/ncomms10891
  34. Y. T. Nam, S. J. Kim, K. M. Kang, W.-B. Jung, D. W. Kim, and H.-T. Jung, "Enhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supports", Carbon, 148, 370 (2019). https://doi.org/10.1016/j.carbon.2019.03.090
  35. S. J. Kim, D. W. Kim, K. M. Cho, K. M. Kang, J. Choi, D. Kim, and H.-T. Jung, "Ultrathin graphene oxide membranes on freestanding carbon nanotube supports for enhanced selective permeation in organic solvents", Sci. Rep., 8, 1959 (2018). https://doi.org/10.1038/s41598-018-19795-z
  36. Y. Ying, D. Liu, W. Zhang, J. Ma, H. Huang, Q. Yang, and C. Zhong, "High-flux graphene oxide membranes intercalated by metal-organic framework with highly selective separation of aqueous organic solution", ACS Appl. Mater. Interfaces, 9, 1710 (2017). https://doi.org/10.1021/acsami.6b14371
  37. Y. Han, Y. Jaing, and C. Gao, "High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes", ACS Appl. Mater. Interfaces, 7, 8147 (2015). https://doi.org/10.1021/acsami.5b00986
  38. H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, and X. Peng, "Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes", Nat. Commun., 4, 2979 (2013). https://doi.org/10.1038/ncomms3979
  39. C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun, and J. Gu, "Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration", ACS Appl. Mater. Interfaces, 9, 11082 (2017). https://doi.org/10.1021/acsami.6b12826
  40. W.-S. Hung, C.-H. Tsou, M. Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, and J.-Y. Lai, "Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing", Chem. Mater., 26, 2983 (2014). https://doi.org/10.1021/cm5007873
  41. W.-S. Hung, T.-J. Lin, Y.-H. Chiao, A. Sengupta, Y.-C. Hsiao, S. R. Wickramasinghe, C.-C. Hu, K.-R. Lee, and J.-Y. Lai, "Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action- induced enhancement of water permeability", J. Mater. Chem. A, 6, 19445 (2018). https://doi.org/10.1039/C8TA08155G
  42. X. Xu, F. Lin, Y. Du, X. Zhang, J. Wu, and Z. Xu, "Graphene oxide nanofiltration membranes stabilized by cationic porphyrin for high salt rejection", ACS. Appl. Mater. Interfaces, 8, 12588 (2016). https://doi.org/10.1021/acsami.6b03693
  43. C.-N. Yeh, K. Raidongia, J. Shao, Q.-H. Yang, and J. Huang, "On the origin of the stability of graphene oxide membranes in water", Nat. Chem., 7, 166 (2015). https://doi.org/10.1038/nchem.2145
  44. A. Ghaffa, L. Zhang, X. Zhu, and B. Chen, "Scalable graphene oxide membranes with tunable water channels and stability for ion rejection", Environ. Sci.: Nano, 6, 904 (2019). https://doi.org/10.1039/C8EN01273C
  45. K. Goh, W. Jiang, H. E. Karahan, S. Zhai, L. Wei, D. Yu, A. G. Fane, R. Wang, and Y. Chen, "All-carbon nanoarchitectures as high-performance separation membranes with superior stability", Adv. Funct. Mater., 25, 7348 (2015). https://doi.org/10.1002/adfm.201502955
  46. Y. T. Nam, J. Choi, K. M. Kang, D. W. Kim, and H.-T. Jung, "Enhanced stability of laminated graphene oxide membranes for nanofiltration via interfacial amide bonding", ACS Appl. Mater. Interfaces, 8, 27376 (2016). https://doi.org/10.1021/acsami.6b09912
  47. H. W. Kim, H. W. Yoon, B. M. Yoo, J. S. Park, K. L. Cleason, B. D. Freeman, and H. B. Park, "High-performance $CO_2$-philic graphene oxide membranes under wet-conditions", Chem. Commun., 50, 13563 (2014). https://doi.org/10.1039/C4CC06207H
  48. H. Kim, D. W. Kim, V. Vasagar, H. Ha, S. Nazarenko, and C. J. Ellison, "Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold", Adv. Funct. Mater., 28, 1803172 (2018). https://doi.org/10.1002/adfm.201803172
  49. J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yu, and S. O. Kim, "Graphene oxide liquid crystals", Angew. Chem. Int. Ed., 50, 3043 (2011). https://doi.org/10.1002/anie.201004692