DOI QR코드

DOI QR Code

Deep Learning in MR Image Processing

  • Lee, Doohee (Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Institute of Engineering Research, Seoul National University) ;
  • Lee, Jingu (Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Institute of Engineering Research, Seoul National University) ;
  • Ko, Jingyu (Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Institute of Engineering Research, Seoul National University) ;
  • Yoon, Jaeyeon (Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Institute of Engineering Research, Seoul National University) ;
  • Ryu, Kanghyun (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Nam, Yoonho (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2018.09.12
  • Accepted : 2019.02.18
  • Published : 2019.06.30

Abstract

Recently, deep learning methods have shown great potential in various tasks that involve handling large amounts of digital data. In the field of MR imaging research, deep learning methods are also rapidly being applied in a wide range of areas to complement or replace traditional model-based methods. Deep learning methods have shown remarkable improvements in several MR image processing areas such as image reconstruction, image quality improvement, parameter mapping, image contrast conversion, and image segmentation. With the current rapid development of deep learning technologies, the importance of the role of deep learning in MR imaging research appears to be growing. In this article, we introduce the basic concepts of deep learning and review recent studies on various MR image processing applications.

Keywords

References

  1. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada, 2012:1097-1105
  2. Hinton G, Deng I, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Processing Magazine 2012;29:82-97 https://doi.org/10.1109/MSP.2012.2205597
  3. Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Vol 2. 2014:3104-3112
  4. Jifara W, Jiang F, Rho S, Cheng M, Liu S. Medical image denoising using convolutional neural network: a residual learning approach. J Supercomput 2017:1-15
  5. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010;11:3371-3408
  6. Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 2017;26:3142-3155 https://doi.org/10.1109/TIP.2017.2662206
  7. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778
  8. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014
  9. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 2018;40:834-848 https://doi.org/10.1109/TPAMI.2017.2699184
  10. Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2015:1520-1528
  11. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-444 https://doi.org/10.1038/nature14539
  12. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), 2011. Volume 15 of JMLR: W&CP 15. 2011:315-323
  13. LeCun Y, Boser B, Denker JS, et al. Handwritten digit recognition with a back-propagation network. In Advances in neural information processing system 2. 1990:396-404
  14. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998;86:2278-2324 https://doi.org/10.1109/5.726791
  15. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge: MIT Press, 2016
  16. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015;61:85-117 https://doi.org/10.1016/j.neunet.2014.09.003
  17. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:1-9
  18. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014;2:2672-2680
  19. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:1125-1134
  20. Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-toimage translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017:2223-2232
  21. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature 2018;555:487-492 https://doi.org/10.1038/nature25988
  22. Lauterbur PC. Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973. Clin Orthop Relat Res 1989:3-6
  23. Mansfield P, Maudsley AA. Medical imaging by NMR. Br J Radiol 1977;50:188-194 https://doi.org/10.1259/0007-1285-50-591-188
  24. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210 https://doi.org/10.1002/mrm.10171
  25. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
  26. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591-603 https://doi.org/10.1002/mrm.1910380414
  27. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195 https://doi.org/10.1002/mrm.21391
  28. Wang G, Ye JC, Mueller K, Fessler JA. Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 2018;37:1289-1296 https://doi.org/10.1109/TMI.2018.2833635
  29. Boyd S, Vandenberghe L. Convex optimization. New York: Cambridge University Press, 2004:127-214
  30. Han Y, Yoo J, Kim HH, Shin HJ, Sung K, Ye JC. Deep learning with domain adaptation for accelerated projection-reconstruction MR. Magn Reson Med 2018;80:1189-1205 https://doi.org/10.1002/mrm.27106
  31. Ye JC, Han Y, Cha E. Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J Imaging Sci 2018;11:991-1048 https://doi.org/10.1137/17M1141771
  32. Lee D, Yoo J, Ye JC. Deep residual learning for compressed sensing MRI. In IEEE 14th International Symposium on Biomedical Imaging (ISBI). 2017:15-18
  33. Hammernik K, Klatzer T, Kobler E, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 2018;79:3055-3071 https://doi.org/10.1002/mrm.26977
  34. Knoll F, Hammernik K, Kobler E, Pock T, Recht MP, Sodickson DK. Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn Reson Med 2019;81:116-128 https://doi.org/10.1002/mrm.27355
  35. Akcakaya M, Moeller S, Weingartner S, Ugurbil K. Scanspecific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging. Magn Reson Med 2019;81:439-453 https://doi.org/10.1002/mrm.27420
  36. Yang G, Yu S, Dong H, et al. DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 2018;37:1310-1321 https://doi.org/10.1109/TMI.2017.2785879
  37. Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 2018;37:1488-1497 https://doi.org/10.1109/TMI.2018.2820120
  38. Mardani M, Gong E, Cheng JY, et al. Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging 2019;38:167-179 https://doi.org/10.1109/TMI.2018.2858752
  39. Hyun CM, Kim HP, Lee SM, Lee S, Seo JK. Deep learning for undersampled MRI reconstruction. Phys Med Biol 2018;63:135007 https://doi.org/10.1088/1361-6560/aac71a
  40. Eo T, Jun Y, Kim T, Jang J, Lee HJ, Hwang D. KIKInet: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn Reson Med 2018;80:2188-2201 https://doi.org/10.1002/mrm.27201
  41. Aggarwal HK, Mani MP, Jacob M. MoDL: Model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging 2019;38:394-405 https://doi.org/10.1109/TMI.2018.2865356
  42. Benou A, Veksler R, Friedman A, Riklin Raviv T. Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences. Med Image Anal 2017;42:145-159 https://doi.org/10.1016/j.media.2017.07.006
  43. Dabov K, Foi A, Katkovnik V, Egiazarian K. Image restoration by sparse 3D transform-domain collaborative filtering. Image Processing: Algorithms and Systems VI. International Society for Optics and Photonics 2008:681207
  44. Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 2006;15:3736-3745 https://doi.org/10.1109/TIP.2006.881969
  45. Zoran D, Weiss Y. From learning models of natural image patches to whole image restoration. In IEEE International Conference on Computer Vision (ICCV). 2011:479-486
  46. Gu S, Zhang L, Zuo W, Feng X. Weighted nuclear norm minimization with application to image denoising. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014:2862-2869
  47. Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 2017;26:4509-4522 https://doi.org/10.1109/TIP.2017.2713099
  48. Lee D, Yoo J, Tak S, Ye J. Deep residual learning for accelerated mri using magnitude and phase networks. IEEE Trans Biomed Eng 2018;65:1985-1995 https://doi.org/10.1109/TBME.2018.2821699
  49. Kyathanahally SP, Doring A, Kreis R. Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy. Magn Reson Med 2018;80:851-863 https://doi.org/10.1002/mrm.27096
  50. Atkinson D, Hill DL, Stoyle PN, Summers PE, Keevil SF. Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans Med Imaging 1997;16:903-910 https://doi.org/10.1109/42.650886
  51. Loktyushin A, Nickisch H, Pohmann R, Scholkopf B. Blind retrospective motion correction of MR images. Magn Reson Med 2013;70:1608-1618 https://doi.org/10.1002/mrm.24615
  52. Ooi MB, Krueger S, Thomas WJ, Swaminathan SV, Brown TR. Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 2009;62:943-954 https://doi.org/10.1002/mrm.22082
  53. Maclaren J, Armstrong BS, Barrows RT, et al. Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain. PLoS One 2012;7:e48088 https://doi.org/10.1371/journal.pone.0048088
  54. Haskell MW, Cauley SF, Wald LL. TArgeted Motion Estimation and Reduction (TAMER): Data Consistency Based Motion Mitigation for MRI Using a Reduced Model Joint Optimization. IEEE Trans Med Imaging 2018;37:1253-1265 https://doi.org/10.1109/TMI.2018.2791482
  55. Kober T, Marques JP, Gruetter R, Krueger G. Head motion detection using FID navigators. Magn Reson Med 2011;66:135-143 https://doi.org/10.1002/mrm.22797
  56. Sommer K, Brosch T, Rafael W, et al. Correction of motion artifacts using a multi-resolution fully convolutional neural network. In Proceeding ISMRM Scientific Meeting & Exhibition. 2018:1175
  57. Johnson PM, Drangova M. Motion correction in MRI using deep learning. In Proceeding ISMRM Scientific Meeting & Exhibition. 2018:4098
  58. Pawar K, Chen Z, Shah J, Egan GF. Motion correction in MRI using deep convolutional neural network. In Proceeding ISMRM Scientific Meeting & Exhibition. 2018:1174
  59. Lee H, Ryu K, Nam Y, Lee J, Kim DH. Reduction of respiratory motion artifact in c-spine imaging using deep learning: Is substitution of navigator possible? In Proceeding ISMRM Scientific Meeting & Exhibition. 2018:2660
  60. Tamada D, Kromrey M-L, Onishi H, Motosugi U. Method for motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MRI of the liver. arXiv preprint arXiv 2018:1807.06956
  61. Meding K, Loktyushin A, Hirsch M. Automatic detection of motion artifacts in MR images using CNNS. 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017:811-815
  62. Pham CH, Ducournau A, Fablet R, Rousseau F. Brain MRI super-resolution using deep 3D convolutional networks. IEEE 14th International Symposium on Biomedical Imaging (ISBI). 2017:197-200
  63. Shi J, Liu Q, Wang C, Zhang Q, Ying S, Xu H. Superresolution reconstruction of MR image with a novel residual learning network algorithm. Phys Med Biol 2018;63:085011 https://doi.org/10.1088/1361-6560/aab9e9
  64. Chen Y, Xie Y, Zhou Z, Shi F, Christodoulou AG, Li D. Brain MRI super resolution using 3D deep densely connected neural networks. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 2018:739-742
  65. Kim KH, Do WJ, Park SH. Improving resolution of MR images with an adversarial network incorporating images with different contrast. Med Phys 2018;45:3120-3131 https://doi.org/10.1002/mp.12945
  66. Chaudhari AS, Fang Z, Kogan F, et al. Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med 2018;80:2139-2154 https://doi.org/10.1002/mrm.27178
  67. Dong C, Loy CC, He K, Tang X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans Pattern Anal Mach Intell 2016;38:295-307 https://doi.org/10.1109/TPAMI.2015.2439281
  68. Tanenbaum LN, Tsiouris AJ, Johnson AN, et al. Synthetic MRI for Clinical Neuroimaging: Results of the Magnetic Resonance Image Compilation (MAGiC) Prospective, Multicenter, Multireader Trial. AJNR Am J Neuroradiol 2017;38:1103-1110 https://doi.org/10.3174/ajnr.A5227
  69. Ryu K, Nam Y, Gho SM, et al. Data-driven synthetic MRI FLAIR artifact correction via deep neural network. J Magn Reson Imaging 2019 [Epub ahead of print]
  70. Lee J, Han Y, Ye JC. k-Space Deep Learning for Reference-free EPI Ghost Correction. arXiv preprint arXiv 2018:1806.00153v2
  71. Kim KH, Choi SH, Park SH. Improving Arterial Spin Labeling by Using Deep Learning. Radiology 2018;287:658-666 https://doi.org/10.1148/radiol.2017171154
  72. Golkov V, Dosovitskiy A, Sperl JI, et al. q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans. IEEE Trans Med Imaging 2016;35:1344-1351 https://doi.org/10.1109/TMI.2016.2551324
  73. Bertleff M, Domsch S, Weingartner S, et al. Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T. NMR Biomed 2017;30 [Epub ahead of print]
  74. Domsch S, Murle B, Weingartner S, Zapp J, Wenz F, Schad LR. Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network: a feasibility study. Magn Reson Med 2018;79:890-899 https://doi.org/10.1002/mrm.26749
  75. Lee D, Jung W, Lee J, et al. SafeNet: Artificial neural network for real-time T2 mapping with quality assurance. Joint Annual Meeting ISMRM-ESMRMB. ISMRM 2018:2277
  76. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature 2013;495:187-192 https://doi.org/10.1038/nature11971
  77. Cohen O, Zhu B, Rosen MS. MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn Reson Med 2018;80:885-894 https://doi.org/10.1002/mrm.27198
  78. Yoon J, Gong E, Chatnuntawech I, et al. Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage 2018;179:199-206 https://doi.org/10.1016/j.neuroimage.2018.06.030
  79. Shmueli K, de Zwart JA, van Gelderen P, Li TQ, Dodd SJ, Duyn JH. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 2009;62:1510-1522 https://doi.org/10.1002/mrm.22135
  80. Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 2009;61:196-204 https://doi.org/10.1002/mrm.21828
  81. Liu T, Liu J, de Rochefort L, et al. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 2011;66:777-783 https://doi.org/10.1002/mrm.22816
  82. Wharton S, Schafer A, Bowtell R. Susceptibility mapping in the human brain using threshold-based k-space division. Magn Reson Med 2010;63:1292-1304 https://doi.org/10.1002/mrm.22334
  83. de Rochefort L, Liu T, Kressler B, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 2010;63:194-206 https://doi.org/10.1002/mrm.22187
  84. Papyan V, Romano Y, Elad M. Convolutional Neural Networks Analyzed via Convolutional Sparse Coding. J Mach Learn Res 2017;83:1-52
  85. Wiatowski T, Bolcskei H. A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction. IEEE Trans Inf Theory 2018;64:1845-1866 https://doi.org/10.1109/TIT.2017.2776228
  86. Ye JC, Han Y, Cha E. Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems. SIAM J Imaging Sci 2018;11:991-1048 https://doi.org/10.1137/17M1141771
  87. Razavian AS, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-shelf: an astounding baseline for recognition. arXiv preprint arXiv 2014:1403.6382
  88. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds.). Advances in neural information processing systems 27. Curran Associates, Inc. 2014:3320-3328
  89. Knoll F, Hammernik K, Kobler E, Pock T, Recht MP, Sodickson DK. Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn Reson Med 2019;81:116-128 https://doi.org/10.1002/mrm.27355
  90. Fong RC, Vedaldi A. Interpretable explanations of black boxes by meaningful perturbation. IEEE International Conference on Computer Vision (ICCV). 2017:3449-3457
  91. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 8689 LNCS, No. PART 1. Springer Verlag. 2014:818-833
  92. Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology 2018;286:676-684 https://doi.org/10.1148/radiol.2017170700
  93. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 2017;44:1408-1419 https://doi.org/10.1002/mp.12155
  94. Xiang L, Wang Q, Nie D, et al. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Med Image Anal 2018;47:31-44 https://doi.org/10.1016/j.media.2018.03.011
  95. Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Isgum I. Deep MR to CT synthesis using unpaired data. International Workshop on Simulation and Synthesis in Medical Imaging. Springer, Cham, 2017:14-23
  96. Jun Y, Eo T, Kim T, et al. Deep-learned 3D black-blood imaging using automatic labelling technique and 3D convolutional neural networks for detecting metastatic brain tumors. Sci Rep 2018;8:9450 https://doi.org/10.1038/s41598-018-27742-1
  97. Gong E, Pauly JM, Wintermark M, Zaharchuk G. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 2018;48:330-340 https://doi.org/10.1002/jmri.25970
  98. Ryu K, Shin NY, Kim DH, Nam Y. Synthesizing T1 weighted MPRAGE image from multi echo GRE images via deep neural network. Magn Reson Imaging 2019 [Epub ahead of print]
  99. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-assisted Invervention. 2015:234-241
  100. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Springer, Cham, 2015:3431-3440
  101. Yang Q, Yan P, Zhang Y, et al. Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. IEEE Trans Med Imaging 2018;37:1348-1357 https://doi.org/10.1109/TMI.2018.2827462
  102. Nie D, Trullo R, Lian J, et al. Medical image synthesis with context-aware generative adversarial networks. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2017-20th International Conference, Proceedings. Springer Verlag, 2017:417-425
  103. Fischl B. FreeSurfer. Neuroimage 2012;62:774-781 https://doi.org/10.1016/j.neuroimage.2012.01.021
  104. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage 2012;62:782-790 https://doi.org/10.1016/j.neuroimage.2011.09.015
  105. Kamnitsas K, Chen L, Ledig C, Rueckert D, Glocker B. Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. Ischemic Stroke Lesion Segment 2015;13:46
  106. Rajchl M, Pawlowski N, Rueckert D, Matthews PM, Glocker B. NeuroNet: Fast and robust reproduction of multiple brain image segmentation pipelines. arXiv preprint arXiv 2018:1806.04224
  107. Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with deep neural networks. Med Image Anal 2017;35:18-31 https://doi.org/10.1016/j.media.2016.05.004
  108. Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 2016;35:1240-1251 https://doi.org/10.1109/TMI.2016.2538465
  109. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 2017;30:449-459 https://doi.org/10.1007/s10278-017-9983-4
  110. Liu S, Zheng H, Feng Y, Li W. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. SPIE Med Imaging 2017;10134:1-4
  111. Song Y, Zhang YD, Yan X, et al. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. J Magn Reson Imaging 2018;48:1570-1577 https://doi.org/10.1002/jmri.26047
  112. Milletari F, Navab N, Ahmadi S-A. V-net: fully convolutional neural networks for volumetric medical image segmentation. In 2016 Fourth International Conference on 3D Vision (3DV). IEEE 2016:565-571
  113. Guerrero R, Qin C, Oktay O, et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. Neuroimage Clin 2018;17:918-934 https://doi.org/10.1016/j.nicl.2017.12.022
  114. Norman B, Pedoia V, Majumdar S. Use of 2D U-net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 2018;288:177-185 https://doi.org/10.1148/radiol.2018172322
  115. Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Med image Comput Comput Assist Interv 2013;16:246-253
  116. Zhou Z, Zhao G, Kijowski R, Liu F. Deep convolutional neural network for segmentation of knee joint anatomy. Magn Reson Med 2018;80:2759-2770 https://doi.org/10.1002/mrm.27229

Cited by

  1. 전이학습을 수행한 신경망을 사용한 압축센싱 심장 자기공명영상 vol.23, pp.4, 2019, https://doi.org/10.7471/ikeee.2019.23.4.1408
  2. Validation of Deep Learning-Based Artifact Correction on Synthetic FLAIR Images in a Different Scanning Environment vol.9, pp.2, 2020, https://doi.org/10.3390/jcm9020364
  3. Automatic Assessment of ASPECTS Using Diffusion-Weighted Imaging in Acute Ischemic Stroke Using Recurrent Residual Convolutional Neural Network vol.10, pp.10, 2019, https://doi.org/10.3390/diagnostics10100803
  4. Blended-Transfer Learning for Compressed-Sensing Cardiac CINE MRI vol.25, pp.1, 2019, https://doi.org/10.13104/imri.2021.25.1.10
  5. Deep learning of brain magnetic resonance images: A brief review vol.192, 2021, https://doi.org/10.1016/j.ymeth.2020.09.007
  6. Deep learning-accelerated T2-weighted imaging of the prostate: Impact of further acceleration with lower spatial resolution on image quality vol.145, 2021, https://doi.org/10.1016/j.ejrad.2021.110012
  7. A deep learning framework combined with word embedding to identify DNA replication origins vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-020-80670-x