DOI QR코드

DOI QR Code

Efficient design of a ∅2×2 inch NaI(Tl) scintillation detector coupled with a SiPM in an aquatic environment

  • Kim, Junhyeok (Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Kyeongjin (Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hwang, Jisung (Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Hojik (Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jinhwan (Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Hyunduk (Institute for Information Technology Convergence, Korea Advanced Institute of Science and Technology) ;
  • Jung, Sung-Hee (Korea Atomic Energy Research Institute) ;
  • Kim, Youngsug (Korea Institute of Civil Engineering and Building Technology) ;
  • Cho, Gyuseong (Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2018.11.02
  • Accepted : 2019.01.25
  • Published : 2019.05.25

Abstract

After the Fukushima accident in 2011, there has been increased public concern about radioactive contamination of water resources through fallout in neighboring countries. However, there is still no available initial response system that can promptly detect radionuclides. The purpose of this research is to develop the most efficient gamma spectrometer to monitor radionuclides in an aquatic environment. We chose a thallium-doped sodium iodide (NaI(Tl)) scintillator readout with a silicon photo multiplier (SiPM) due to its compactness and low operating voltage. Three types of a scintillation detector were tested. One was composed of a scintillator and a photomultiplier tube (PMT) as a reference; another system consisted of a scintillator and an array of SiPMs with a light guide; and the other was a scintillator directly coupled with an array of SiPMs. Among the SiPM-based detectors, the direct coupling system showed the best energy resolution at all energy peaks. It achieved 9.76% energy resolution for a 662 keV gamma ray. Through additional experiments and a simulation, we proved that the light guide degraded energy resolution with increasing statistical uncertainty. The results indicated that the SiPM-based scintillation detector with no light guide is the most efficient design for monitoring radionuclides in an aquatic environment.

Keywords

References

  1. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, New York, 2010.
  2. Chaehun Lee, Suk Sul Woo, Hyountaek Kim, Chankyu Kim, Gyuseong Cho, Effect on MIM structured parallel quenching capacitor of SiPMs, Nucl. Instrum. Methods A 650 (2011) 125-128. https://doi.org/10.1016/j.nima.2010.12.127
  3. Hyoungtaek Kim, Suk Sul Woo, Chaehun Lee, Bo-Sun Kang, Gyuseong Cho, Optimum design of quenching capacitor integrated silicon photomultipliers for TOF-PET application, Physics Procedia 37 (2012) 1511-1517. https://doi.org/10.1016/j.phpro.2012.05.327
  4. M. Bondi, M. Battaglieri, M. Carpinelli, A. Celentano, M. De Napoli, R. De Vita, L. Marsicano, N. Randazzo, V. Sipala, E.S. Smith, Large-size CsI(Tl) crystal read-out by SiPM for low-energy charged-particles detection, Nucl. Instrum. Methods A 867 (2017) 148-153. https://doi.org/10.1016/j.nima.2017.06.024
  5. J-series High PDE and Timing Resolution, TSV Package DATASHEET, SensL, 2017. Available from: https://sensl.com/products/j-series/.
  6. Tuchen Huang, Qibin Fu, Cenxi Yuan, Shaopeng Lin, A gamma and neutron phoswich read out with SiPM for SPRD, Nucl. Instrum. Methods A 881 (2018) 48-52. https://doi.org/10.1016/j.nima.2017.11.007
  7. M. Grodzicka-Kobylka, T. Szczesniak, M. Moszynski, L. Swiderski, M. Szawlowski, Silicon photomultipliers in scintillation detectors used for gamma ray energies up to 6.1 MeV, Nucl. Instrum. Methods A 874 (2017) 137-148. https://doi.org/10.1016/j.nima.2017.08.031
  8. H. Yoo, Y. Kim, H. Kim, Y. YI, G. Cho, The development of gamma energy identifying algorithm for compact radiation sensors using stepwise refinement technique, Journal of Radiation Protection and Research 42 (2) (2017) 91-97. https://doi.org/10.14407/jrpr.2017.42.2.91
  9. E.M. Becker, A.T. Farsoni, A.M. Alhawsawi, B. Alemayehu, Small prototype gamma spectrometer using CsI(Tl) scintillator coupled to a solid-state photomultiplier, IEEE Trans. Nucl. Sci. 60 (2013) 968-972. https://doi.org/10.1109/TNS.2012.2228236
  10. L. Swiderski, M. Moszynski, W. Czarnacki, Z. Mianowska, P. Sibczynski, T. Sworobowicz, T. szczesniak, A. Syntfeld-Kazuch, W. Klamra, R.T. Williams, S. Gridin, X. Lu, M.R. Mayhugh, A. Gektin, S. Vasyukov, C. Piemonte, A. Ferri, A. Gola, CsI:Tl scintillation pulse shapes measured with a SiPM photodetector in a liquid nitrogen cryostat, in: IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), IEEE, 2016.
  11. SpectroTRACER-Spectroscopic probe DATASHEET, Bertin Instrument, Available from: https://www.bertin-instruments.com/product/environmental-radiation-monitoring-systems/spectrotracer-air-soil-water/.
  12. C. Kim, H. Kim, J. Kim, C. Lee, H. Yoo, D.U. Kang, M. Cho, M.S. Kim, D. Lee, Y. Kim, K.T. Lim, S. Yang, G. Cho, Replacement of a photomultiplier tube in A 2-inch thallium-doped sodium iodide gamma spectrometer with silicon photomultipliers and A light guide, Nucl. Eng. Technol 47 (2015) 479-487. https://doi.org/10.1016/j.net.2015.02.001
  13. Tuchen Huang, Qibin Fu, Shaopeng Lin, Biao Wang, NaI(Tl) scintillator read out with SiPM array for gamma spectrometer, Nucl. Instrum. Methods A 851 (2017) 118-124. https://doi.org/10.1016/j.nima.2017.01.068
  14. Photomultiplier Tubes and Related Products Catalog, Hamamatsu, 2016. Available from: https://www.hamamatsu.com/jp/en/product/optical-sensors/pmt/catalog/index.html.
  15. Steven Staelens, Daniel Strul, Giovanni Santin, Stefaan Vandenberghe, Michel Koole, Yves D'Asseler, Ignace Lemahieu, Rik Van de Walle, Monte Carlo simulations of a scintillation camera using GATE: validation and application modelling, Phys. Med. Biol. 48 (2003) 3021-3042. https://doi.org/10.1088/0031-9155/48/18/305
  16. D.J. van der Laan, Dennis R. Schaart, Marnix C. Maas, J Beekman Freek, Bruyndonckx Peter, W E van Eijk Carel, Optical simulation of monolithic scintillator detectors using GATE/GEANT4, Phys. Med. Biol. 55 (2010) 1659-1675. https://doi.org/10.1088/0031-9155/55/6/009
  17. M. Grodzicka, M. Moszynski, T. Szczesniak, M. Szawlowski, J. Baszak, Characterization of $4{\times}4ch$ MPPC array in scintillation spectrometry, J. Instrum. 8 (2013) P09020. https://doi.org/10.1088/1748-0221/8/09/P09020
  18. M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, M. Grodzicka, J.I. Wanowska, P. Sibczynski, T. Szczesniak, Energy resolution of scintillation detectors, Nucl. Instrum. Methods A 805 (2016) 25-35. https://doi.org/10.1016/j.nima.2015.07.059
  19. Simon R. Cherry, James A. Sorenson, Michael E. Phelps, Physics in Nuclear Medicine, fourth ed., Saunders/Elsevier, Philadelphia, 2012.
  20. M. Moszynski, Energy resolution of scintillation detectors, SPIE Proc 5922 (2005) 1.