DOI QR코드

DOI QR Code

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao (Department of Civil Engineering, Xi'an Jiaotong University) ;
  • Sun, Qing (Department of Civil Engineering, Xi'an Jiaotong University)
  • Received : 2018.12.24
  • Accepted : 2019.06.01
  • Published : 2019.07.25

Abstract

This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Shaanxi Provincial Department of Education, Central Universities

References

  1. ANSI/AISC 360-16 (2016), Specification for structural steel buildings, American National Standards Institute; Chicago, IL, USA.
  2. Boyd, P.F., Cofer, W.F. and Mclean, D.I. (1995), "Seismic performance of steel-encased concrete columns under flexural loading", ACI Struct. J., 92(3), 355-364.
  3. Chen, S.J., Yang, K.C., Lin, K.M. and Wang, C.D. (2011), "Seismic behavior of ductile rectangular composite bridge piers", Earthq. Eng. Struct. Dyn., 40(1), 21-34. https://doi.org/10.1002/eqe.1018
  4. Cheng, C.S. (1995), "Some projection properties of orthogonal arrays", Ann. Stat., 23(4), 1223-1233. https://doi.org/10.1214/aos/1176324706
  5. Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58(12), 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6
  6. Fam, A., Qie, F.S. and Rizkalla, S. (2004), "Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads", J. Struct. Eng., 130(4), 631-640. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631)
  7. GB 50010-2010 (2010), Code for design of concrete structures, Professional Standard of the People's Republic of China; Beijing, China.
  8. GB 50936-2014 (2014), Technical code for concrete filled steel tubular structures, Professional Standard of the People's Republic of China; Beijing, China.
  9. Gupta, V.K., Nigam, A.K. and Dey, A. (1982), "Orthogonal main-effect plans for asymmetrical factorials", Technometrics, 24(2), 135-137. https://doi.org/10.1080/00401706.1982.10487735
  10. Hajjar, J.F., Gourley, B.C. and Olson, M.C. (1997), "A cyclic nonlinear model for concrete-filled tubes. II: verification", J. Struct. Eng., 123(6), 745-754. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(745)
  11. Han, L.H. and Yang, Y.F. (2005), "Cyclic performance of concrete-filled steel CHS columns under flexural loading", J. Constr. Steel Res., 61(4), 423-452. https://doi.org/10.1016/j.jcsr.2004.10.004
  12. Han, L.H., Huang, H., Tao, Z. and Zhao, X.L. (2006), "Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending", Eng. Struct., 28(12), 1698-1714. https://doi.org/10.1016/j.engstruct.2006.03.004
  13. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016
  14. Hedayat, A.S., Sloane, N.J.A. and Stufken, J. (2012), Orthogonal Arrays: Theory and Applications, Springer Science & Business Media, Berlin, Germany.
  15. Huang, Z., Jiang, L.Z., Chen, Y.F., Luo, Y. and Zhou, W.B. (2018), "Experimental study on the seismic performance of concrete filled steel tubular laced columns", Steel Compos. Struct., Int. J., 26(6), 719-731. https://doi.org/10.12989/scs.2018.26.6.719
  16. Inai, E., Mukai, A., Kai, M., Tokinoya, H., Fukumoto, T. and Mori, K. (2004), "Behavior of concrete-filled steel tube beam columns", J. Struct. Eng., 130(2), 189-202. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(189)
  17. Javidan, F., Heidarpour, A., Zhao, X.L. and Minkkinen, J. (2016), "Application of high strength and ultra-high strength steel tubes in long hybrid compressive members: Experimental and numerical investigation", Thin-Wall. Struct., 102, 273-285. https://doi.org/10.1016/j.tws.2016.02.002
  18. Javidan, F., Heidarpour, A., Zhao, X.L. and Al-Mahaidi, R. (2018), "Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading", Steel Compos. Struct., Int. J., 27(2), 229-242. https://doi.org/10.12989/scs.2018.27.2.229
  19. Jiang, J.J. and Lu, X.Z. (2005), Finite Element Analysis of Concrete Structures, Tsinghua University Press, Beijing, China.
  20. Kanvinde, A.M. and Deierlein, G.G. (2006), "The void growth model and the stress modified critical strain model to predict ductile fracture in structural steels", J. Struct. Eng., 132(12), 1907-1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907)
  21. Kim, J.H. and Mander, J.B. (2007), "Influence of transverse reinforcement on elastic shear stiffness of cracked concrete elements", Eng. Struct., 29(8), 1798-1807. https://doi.org/10.1016/j.engstruct.2006.10.001
  22. Kowalsky, M.J. and Priestley, M.N. (2000), "Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions", ACI Struct. J., 97(3), 388-396.
  23. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  24. Li, T.J., Li, G.Q., Chan, S.L. and Wang, Y.B. (2016), "Behavior of Q690 high-strength steel columns: Part 1: Experimental investigation", J. Constr. Steel Res., 123, 18-30. https://doi.org/10.1016/j.jcsr.2016.03.026
  25. Li, C., Hao, H. and Bi, K. (2017), "Numerical study on the seismic performance of precast segmental concrete columns under cyclic loading", Eng. Struct. 148, 373-386. https://doi.org/10.1016/j.engstruct.2017.06.062
  26. Liao, F.F., Li, W.C. and Zhou, T.H. (2016), "Experimental study on fracture characteristics of Q460D high strength steel and calibration of fracture criterion", J. Xi'an Univ. Arch. Tech. (Natural Science Edition), 48(3), 362-370.
  27. Ma, D.Y., Han, L.H., Li, W. and Zhao, X.L. (2017), "Seismic Performance of concrete-encased CFST piers: analysis", J. Bridge. Eng., 23(1), 04017119. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001157
  28. Marson, J. and Bruneau, M. (2004), "Cyclic testing of concrete-filled circular steel bridge piers having encased fixed-based detail", J. Bridge Eng., 9(1), 14-23. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:1(14)
  29. Nakanishi, K., Kitada, T. and Nakai, H. (1999), "Experimental study on ultimate strength and ductility of concrete filled steel columns under strong earthquake", J. Constr. Steel Res., 51(3), 297-319. https://doi.org/10.1016/S0143-974X(99)00006-1
  30. Portoles, J.M., Serra, E. and Romero, M.L. (2013), "Influence of ultra-high strength infill in slender concrete-filled steel tubular columns", J. Constr. Steel Res., 86, 107-114. https://doi.org/10.1016/j.jcsr.2013.03.016
  31. Priestley, M.N., Seible, F., Xiao, Y. and Verma, R. (1994), "Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength-part 1: Theoretical considerations and test design", ACI Struct. J., 91(4), 394-405.
  32. Sakino, K. (1981), "Hysteretic behavior of concrete filled squara steel tubular beam-columns failed in flexure", Trans. Jpn. Concr. Inst., 3, 439-446.
  33. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  34. Skalomenos, K.A., Hayashi, K., Nishi, R., Inamasu, H. and Nakashima, M. (2016), "Experimental behavior of concrete-filled steel tube columns using ultrahigh-strength steel", J. Struct. Eng., 142(9), 04016057. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001513
  35. Usami, T. and Ge, H. (1994), "Ductility of concrete-filled steel box columns under cyclic loading", J. Struct. Eng., 120(7), 2021-2040. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2021)
  36. Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2002), "Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns", J. Constr. Steel Res., 58(5-8), 725-758. https://doi.org/10.1016/S0143-974X(01)00099-2
  37. Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2004), "Seismic behavior and design of high-strength square concrete-filled steel tube beam columns", J. Struct. Eng., 130(2), 169-179. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(169)
  38. Wu, C.J. and Hamada, M.S. (2011), Experiments: Planning, Analysis, and Optimization, John Wiley & Sons, Hoboken, USA.
  39. Xue, J., Zhou, C. and Lin, J. (2018), "Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings", Steel Compos. Struct., Int. J., 29(4), 451-464. https://doi.org/10.12989/scs.2018.29.4.451
  40. Yu, H.L. and Jeong, D.Y. (2010), "Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens", Theor. Appl. Fract. Mech., 54(1), 54-62. https://doi.org/10.1016/j.tafmec.2010.06.015
  41. Zhang, G.W., Xiao, Y. and Kunnath, S. (2009), "Low-cycle fatigue damage of circular concrete-filled-tube columns", ACI Struct. J., 106(2), 151-159.
  42. Zhong, S.T. (2003), The Concrete-filled Steel Tubular Structures, Tsinghua University Press, Beijing, China.
  43. Zhou, X. and Liu, J. (2010), "Seismic behavior and shear strength of tubed RC short columns", J. Constr. Steel Res., 66(3), 385-397. https://doi.org/10.1016/j.jcsr.2009.10.011
  44. Zhou, T., Chen, Z. and Liu, H. (2012), "Seismic behavior of special shaped column composed of concrete filled steel tubes", J. Constr. Steel Res., 75, 131-141. https://doi.org/10.1016/j.jcsr.2012.03.015
  45. Zhou, T.H., Li, W.C., Guan, Y. and Bai, L. (2014), "Damage analysis of steel frames under cyclic load based on stress triaxiality", Eng. Mech., 31(7), 146-155.
  46. Zhu, W., Jia, J., Gao, J. and Zhang, F. (2016), "Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load", Eng. Struct., 125, 191-204. https://doi.org/10.1016/j.engstruct.2016.07.018
  47. Zhu, W., Jia, J. and Zhang, J. (2017), "Experimental research on seismic behavior of steel reinforced high-strength concrete short columns", Steel Compos. Struct., Int. J., 25(5), 603-615. https://doi.org/10.12989/scs.2017.25.5.603

Cited by

  1. Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2019, https://doi.org/10.12989/scs.2020.35.2.295
  2. Axial Compression Behavior of Circular Concrete-Filled High-Strength Thin-Walled Steel Tubular Columns with Out-of-Code D/t Ratios vol.2021, 2019, https://doi.org/10.1155/2021/9081566